i can decrypt the length

This commit is contained in:
nora 2024-08-10 17:17:22 +02:00
parent adff1f593b
commit 08d28a152f
6 changed files with 102 additions and 50 deletions

12
Cargo.lock generated
View file

@ -152,16 +152,6 @@ dependencies = [
"libc", "libc",
] ]
[[package]]
name = "crypto-bigint"
version = "0.5.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0dc92fb57ca44df6db8059111ab3af99a63d5d0f8375d9972e319a379c6bab76"
dependencies = [
"rand_core",
"subtle",
]
[[package]] [[package]]
name = "crypto-common" name = "crypto-common"
version = "0.1.6" version = "0.1.6"
@ -701,8 +691,8 @@ dependencies = [
name = "ssh-transport" name = "ssh-transport"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"chacha20",
"chacha20poly1305", "chacha20poly1305",
"crypto-bigint",
"ed25519-dalek", "ed25519-dalek",
"eyre", "eyre",
"hex-literal", "hex-literal",

View file

@ -4,8 +4,8 @@ version = "0.1.0"
edition = "2021" edition = "2021"
[dependencies] [dependencies]
chacha20 = "0.9.1"
chacha20poly1305 = "0.10.1" chacha20poly1305 = "0.10.1"
crypto-bigint = "0.5.5"
ed25519-dalek = { version = "2.1.1" } ed25519-dalek = { version = "2.1.1" }
eyre = "0.6.12" eyre = "0.6.12"
rand = "0.8.5" rand = "0.8.5"

12
ssh-transport/README.md Normal file
View file

@ -0,0 +1,12 @@
# ssh-transport
Transport layer of SSH.
Based on [RFC 4253 The Secure Shell (SSH) Transport Layer Protocol](https://datatracker.ietf.org/doc/html/rfc4253)
and [RFC 4251 The Secure Shell (SSH) Protocol Architecture](https://datatracker.ietf.org/doc/html/rfc4251).
Other relevant RFCs:
- [RFC 5649 AES Galois Counter Mode for the Secure Shell Transport Layer Protocol](https://datatracker.ietf.org/doc/html/rfc5647)
- [RFC 5656 Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer](https://datatracker.ietf.org/doc/html/rfc5656)
- [RFC 6668 SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol](https://datatracker.ietf.org/doc/html/rfc6668)
- [RFC 8709 Ed25519 and Ed448 Public Key Algorithms for the Secure Shell (SSH) Protocol](https://datatracker.ietf.org/doc/html/rfc8709)

View file

@ -8,12 +8,8 @@ use crate::Result;
pub(crate) struct Session { pub(crate) struct Session {
session_id: [u8; 32], session_id: [u8; 32],
client_to_server_iv: [u8; 32], encryption_key_client_to_server: SshChaCha20Poly1305,
server_to_client_iv: [u8; 32], encryption_key_server_to_client: SshChaCha20Poly1305,
encryption_key_client_to_server: ChaCha20Poly1305,
encryption_key_server_to_client: ChaCha20Poly1305,
integrity_key_server_to_client: [u8; 32],
integrity_key_client_to_server: [u8; 32],
} }
impl Session { impl Session {
@ -27,36 +23,58 @@ impl Session {
/// <https://datatracker.ietf.org/doc/html/rfc4253#section-7.2> /// <https://datatracker.ietf.org/doc/html/rfc4253#section-7.2>
fn from_keys(session_id: [u8; 32], h: [u8; 32], k: [u8; 32]) -> Self { fn from_keys(session_id: [u8; 32], h: [u8; 32], k: [u8; 32]) -> Self {
let derive = |letter: &str| { let encryption_key_client_to_server =
let mut hash = sha2::Sha256::new(); SshChaCha20Poly1305::new(derive_key(k, h, "C", session_id));
encode_mpint_for_hash(&k, |data| hash.update(data)); let encryption_key_server_to_client =
hash.update(h); SshChaCha20Poly1305::new(derive_key(k, h, "D", session_id));
hash.update(letter.as_bytes());
hash.update(session_id);
hash.finalize()
};
let encryption_key_client_to_server = ChaCha20Poly1305::new(&derive("C"));
let encryption_key_server_to_client = ChaCha20Poly1305::new(&derive("D"));
Self { Self {
session_id, session_id,
client_to_server_iv: derive("A").into(), // client_to_server_iv: derive("A").into(),
server_to_client_iv: derive("B").into(), // server_to_client_iv: derive("B").into(),
encryption_key_client_to_server, encryption_key_client_to_server,
encryption_key_server_to_client, encryption_key_server_to_client,
integrity_key_client_to_server: derive("E").into(), // integrity_key_client_to_server: derive("E").into(),
integrity_key_server_to_client: derive("F").into(), // integrity_key_server_to_client: derive("F").into(),
} }
} }
pub(crate) fn decrypt_bytes(&mut self, bytes: &[u8]) -> Result<Vec<u8>> { pub(crate) fn decrypt_len(&mut self, bytes: &mut [u8], packet_number: u64) {
self.encryption_key_client_to_server self.encryption_key_client_to_server
.decrypt(&[0; 12].into(), bytes) .decrypt_len(bytes, packet_number);
.map_err(|_| crate::client_error!("failed to decrypt, invalid message"))
} }
} }
/// Derive a key from the shared secret K and exchange hash H.
/// <https://datatracker.ietf.org/doc/html/rfc4253#section-7.2>
fn derive_key<const KEY_LEN: usize>(
k: [u8; 32],
h: [u8; 32],
letter: &str,
session_id: [u8; 32],
) -> [u8; KEY_LEN] {
let sha2len = sha2::Sha256::output_size();
let mut output = [0; KEY_LEN];
for i in 0..(KEY_LEN / sha2len) {
let mut hash = sha2::Sha256::new();
encode_mpint_for_hash(&k, |data| hash.update(data));
hash.update(h);
if i == 0 {
hash.update(letter.as_bytes());
hash.update(session_id);
}
hash.update(&output[..(i * sha2len)]);
output[(i * sha2len)..][..sha2len].copy_from_slice(&hash.finalize())
}
output
}
pub(crate) fn encode_mpint_for_hash(mut key: &[u8], mut add_to_hash: impl FnMut(&[u8])) { pub(crate) fn encode_mpint_for_hash(mut key: &[u8], mut add_to_hash: impl FnMut(&[u8])) {
while key[0] == 0 { while key[0] == 0 {
key = &key[1..]; key = &key[1..];
@ -69,3 +87,29 @@ pub(crate) fn encode_mpint_for_hash(mut key: &[u8], mut add_to_hash: impl FnMut(
} }
add_to_hash(key); add_to_hash(key);
} }
/// `chacha20-poly1305@openssh.com` uses a 64-bit nonce, not the 96-bit one in the IETF version.
type SshChaCha20 = chacha20::ChaCha20Legacy;
struct SshChaCha20Poly1305 {
header_key: [u8; 32],
main: ChaCha20Poly1305,
}
impl SshChaCha20Poly1305 {
fn new(key: [u8; 64]) -> Self {
Self {
main: ChaCha20Poly1305::new(&<[u8; 32]>::try_from(&key[..32]).unwrap().into()),
header_key: key[32..].try_into().unwrap(),
}
}
fn decrypt_len(&self, bytes: &mut [u8], packet_number: u64) {
use chacha20::cipher::{KeyIvInit, StreamCipher};
// <https://github.com/openssh/openssh-portable/blob/1ec0a64c5dc57b8a2053a93b5ef0d02ff8598e5c/PROTOCOL.chacha20poly1305>
let mut cipher =
SshChaCha20::new(&self.header_key.into(), &packet_number.to_be_bytes().into());
cipher.apply_keystream(bytes);
}
}

View file

@ -221,12 +221,12 @@ impl ServerConnection {
let secret = let secret =
EphemeralSecret::random_from_rng(SshRngRandAdapter(&mut *self.rng)); EphemeralSecret::random_from_rng(SshRngRandAdapter(&mut *self.rng));
let server_public_key = PublicKey::from(&secret); // f let server_public_key = PublicKey::from(&secret); // Q_S
let client_public_key = dh.e; // e let client_public_key = dh.e; // Q_C
let shared_secret = let shared_secret =
secret.diffie_hellman(&client_public_key.to_x25519_public_key()?); // k secret.diffie_hellman(&client_public_key.to_x25519_public_key()?); // K
let pub_hostkey = SshPublicKey { let pub_hostkey = SshPublicKey {
format: b"ssh-ed25519", format: b"ssh-ed25519",
@ -256,11 +256,11 @@ impl ServerConnection {
hash_string(&mut hash, client_kexinit); // I_C hash_string(&mut hash, client_kexinit); // I_C
hash_string(&mut hash, server_kexinit); // I_S hash_string(&mut hash, server_kexinit); // I_S
add_hash(&mut hash, &pub_hostkey.to_bytes()); // K_S add_hash(&mut hash, &pub_hostkey.to_bytes()); // K_S
// For normal DH as in RFC4253, e and f are mpints.
// While the RFC says that e and f are mpints, we need to *NOT* treat them as mpints here. // But for ECDH as defined in RFC5656, Q_C and Q_S are strings.
// Neither RFC4253 nor RFC8709 mention this. // <https://datatracker.ietf.org/doc/html/rfc5656#section-4>
hash_string(&mut hash, &client_public_key.0); // e hash_string(&mut hash, &client_public_key.0); // Q_C
hash_string(&mut hash, server_public_key.as_bytes()); // f hash_string(&mut hash, server_public_key.as_bytes()); // Q_S
hash_mpint(&mut hash, shared_secret.as_bytes()); // K hash_mpint(&mut hash, shared_secret.as_bytes()); // K
let hash = hash.finalize(); let hash = hash.finalize();

View file

@ -9,7 +9,7 @@ use crate::Result;
pub(crate) struct PacketTransport { pub(crate) struct PacketTransport {
state: PacketTransportState, state: PacketTransportState,
packets: VecDeque<Packet>, packets: VecDeque<Packet>,
next_recv_seq_nr: u32, next_recv_seq_nr: u64,
} }
enum PacketTransportState { enum PacketTransportState {
@ -62,11 +62,17 @@ impl PacketTransport {
} }
} }
PacketTransportState::Keyed { session } => { PacketTransportState::Keyed { session } => {
// TODO: don't yolo?... let mut len = [0_u8; 4];
let encrypted_len = &bytes[..4]; let Some(len_bytes) = bytes.get(0..4) else {
// TODO: all of this is nonsense. how does AEAD even work with these partial decryptions? return Err(client_error!(
// should i just validate it by hand?? i will find out tomorrow! "packet too short, not enough bytes for length"
let decrypted_len = session.decrypt_bytes(encrypted_len)?; ));
};
len.copy_from_slice(len_bytes);
session.decrypt_len(&mut len, self.next_recv_seq_nr);
let len = u32::from_be_bytes(len);
dbg!(len);
// TODO: dont assume we get it all as one.... AAaAAA
} }
} }