This commit is contained in:
nora 2024-08-10 02:11:01 +02:00
parent aa96faa697
commit 0eb9001f08
7 changed files with 445 additions and 409 deletions

View file

@ -1,868 +0,0 @@
mod parse;
#[derive(Debug)]
pub enum SshError {
/// The client did something wrong.
/// The connection should be closed and a notice may be logged,
/// but this does not require operator intervention.
ClientError(String),
/// Something went wrong on the server.
/// The connection should be closed and an error should be logged.
ServerError(eyre::Report),
}
pub type Result<T, E = SshError> = std::result::Result<T, E>;
impl From<eyre::Report> for SshError {
fn from(value: eyre::Report) -> Self {
Self::ServerError(value)
}
}
macro_rules! client_error {
($($tt:tt)*) => {
$crate::SshError::ClientError(::std::format!($($tt)*))
};
}
use core::str;
use std::{collections::VecDeque, mem::take};
use client_error;
use ed25519_dalek::ed25519::signature::Signer;
use parse::{MpInt, NameList, Parser, Writer};
use rand::RngCore;
use sha2::Digest;
use x25519_dalek::{EphemeralSecret, PublicKey};
// This is definitely who we are.
pub const SERVER_IDENTIFICATION: &[u8] = b"SSH-2.0-OpenSSH_9.7\r\n";
pub struct ServerConnection {
state: ServerState,
packet_transport: PacketTransport,
send_queue: Vec<Msg>,
rng: Box<dyn SshRng + Send + Sync>,
}
enum ServerState {
ProtoExchange {
received: Vec<u8>,
},
KeyExchangeInit {
client_identification: Vec<u8>,
},
DhKeyInit {
client_identification: Vec<u8>,
client_kexinit: Vec<u8>,
server_kexinit: Vec<u8>,
},
NewKeys,
ServiceRequest {},
}
pub trait SshRng {
fn fill_bytes(&mut self, dest: &mut [u8]);
}
struct SshRngRandAdapter<'a>(&'a mut dyn SshRng);
impl rand::CryptoRng for SshRngRandAdapter<'_> {}
impl rand::RngCore for SshRngRandAdapter<'_> {
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
fn next_u64(&mut self) -> u64 {
rand_core::impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.0.fill_bytes(dest);
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> std::result::Result<(), rand::Error> {
Ok(self.fill_bytes(dest))
}
}
pub struct ThreadRngRand;
impl SshRng for ThreadRngRand {
fn fill_bytes(&mut self, dest: &mut [u8]) {
rand::thread_rng().fill_bytes(dest);
}
}
impl ServerConnection {
pub fn new(rng: impl SshRng + Send + Sync + 'static) -> Self {
Self {
state: ServerState::ProtoExchange {
received: Vec::new(),
},
packet_transport: PacketTransport {
state: PacketTransportState::Plaintext(PacketParser::new()),
packets: VecDeque::new(),
},
send_queue: Vec::new(),
rng: Box::new(rng),
}
}
}
impl ServerConnection {
pub fn recv_bytes(&mut self, bytes: &[u8]) -> Result<()> {
if let ServerState::ProtoExchange { received } = &mut self.state {
received.extend_from_slice(bytes);
if received.windows(2).find(|win| win == b"\r\n").is_some() {
// TODO: care that its SSH 2.0 instead of anythin anything else
// The client will not send any more information than this until we respond, so discord the rest of the bytes.
let client_identification = received.to_owned();
self.queue_msg(MsgKind::ServerProtocolInfo);
self.state = ServerState::KeyExchangeInit {
client_identification,
};
}
// This means that we must be called at least twice, which is fine I think.
return Ok(());
}
self.packet_transport.recv_bytes(bytes)?;
match &mut self.state {
ServerState::ProtoExchange { .. } => unreachable!("handled above"),
ServerState::KeyExchangeInit {
client_identification,
} => match self.packet_transport.next_packet() {
Some(data) => {
let kex = KeyExchangeInitPacket::parse(&data.payload)?;
let require_algorithm =
|expected: &'static str, list: NameList<'_>| -> Result<&'static str> {
if list.iter().any(|alg| alg == expected) {
Ok(expected)
} else {
Err(client_error!(
"client does not supported algorithm {expected}"
))
}
};
let key_algorithm = require_algorithm("curve25519-sha256", kex.kex_algorithms)?;
let server_host_key_algorithm =
require_algorithm("ssh-ed25519", kex.server_host_key_algorithms)?;
let encryption_algorithm_client_to_server = require_algorithm(
"chacha20-poly1305@openssh.com",
kex.encryption_algorithms_client_to_server,
)?;
let encryption_algorithm_server_to_client = require_algorithm(
"chacha20-poly1305@openssh.com",
kex.encryption_algorithms_server_to_client,
)?;
let mac_algorithm_client_to_server =
require_algorithm("hmac-sha2-256", kex.mac_algorithms_client_to_server)?;
let mac_algorithm_server_to_client =
require_algorithm("hmac-sha2-256", kex.mac_algorithms_server_to_client)?;
let compression_algorithm_client_to_server =
require_algorithm("none", kex.compression_algorithms_client_to_server)?;
let compression_algorithm_server_to_client =
require_algorithm("none", kex.compression_algorithms_server_to_client)?;
let _ = kex.languages_client_to_server;
let _ = kex.languages_server_to_client;
if kex.first_kex_packet_follows {
return Err(client_error!(
"the client wants to send a guessed packet, that's annoying :("
));
}
let server_kexinit = KeyExchangeInitPacket {
cookie: [0; 16],
kex_algorithms: NameList::one(key_algorithm),
server_host_key_algorithms: NameList::one(server_host_key_algorithm),
encryption_algorithms_client_to_server: NameList::one(
encryption_algorithm_client_to_server,
),
encryption_algorithms_server_to_client: NameList::one(
encryption_algorithm_server_to_client,
),
mac_algorithms_client_to_server: NameList::one(
mac_algorithm_client_to_server,
),
mac_algorithms_server_to_client: NameList::one(
mac_algorithm_server_to_client,
),
compression_algorithms_client_to_server: NameList::one(
compression_algorithm_client_to_server,
),
compression_algorithms_server_to_client: NameList::one(
compression_algorithm_server_to_client,
),
languages_client_to_server: NameList::none(),
languages_server_to_client: NameList::none(),
first_kex_packet_follows: false,
};
let client_identification = take(client_identification);
let server_kexinit_payload = server_kexinit.to_bytes();
self.queue_msg(MsgKind::Packet(Packet {
payload: server_kexinit_payload.clone(),
}));
self.state = ServerState::DhKeyInit {
client_identification,
client_kexinit: data.payload,
server_kexinit: server_kexinit_payload,
};
}
None => {},
},
ServerState::DhKeyInit {
client_identification,
client_kexinit,
server_kexinit,
} => match self.packet_transport.next_packet() {
Some(data) => {
let dh = DhKeyExchangeInitPacket::parse(&data.payload)?;
let secret =
EphemeralSecret::random_from_rng(SshRngRandAdapter(&mut *self.rng));
let server_public_key = PublicKey::from(&secret); // f
let client_public_key = dh.e; // e
let shared_secret =
secret.diffie_hellman(&client_public_key.to_x25519_public_key()?); // k
let pub_hostkey = SshPublicKey {
format: b"ssh-ed25519",
data: PUB_HOSTKEY_BYTES,
};
let mut hash = sha2::Sha256::new();
let add_hash = |hash: &mut sha2::Sha256, bytes: &[u8]| {
hash.update(bytes);
};
let hash_string = |hash: &mut sha2::Sha256, bytes: &[u8]| {
add_hash(hash, &u32::to_be_bytes(bytes.len() as u32));
add_hash(hash, bytes);
};
let hash_mpint = |hash: &mut sha2::Sha256, mut bytes: &[u8]| {
while bytes[0] == 0 {
bytes = &bytes[1..];
}
// If the first high bit is set, pad it with a zero.
let pad_zero = (bytes[0] & 0b10000000) > 1;
add_hash(
hash,
&u32::to_be_bytes((bytes.len() + (pad_zero as usize)) as u32),
);
if pad_zero {
add_hash(hash, &[0]);
}
add_hash(hash, bytes);
};
hash_string(
&mut hash,
&client_identification[..(client_identification.len() - 2)],
); // V_C
hash_string(
&mut hash,
&SERVER_IDENTIFICATION[..(SERVER_IDENTIFICATION.len() - 2)],
); // V_S
hash_string(&mut hash, client_kexinit); // I_C
hash_string(&mut hash, server_kexinit); // I_S
add_hash(&mut hash, &pub_hostkey.to_bytes()); // K_S
// While the RFC says that e and f are mpints, we need to *NOT* treat them as mpints here.
// Neither RFC4253 nor RFC8709 mention this.
hash_string(&mut hash, &client_public_key.0); // e
hash_string(&mut hash, server_public_key.as_bytes()); // f
hash_mpint(&mut hash, shared_secret.as_bytes()); // K
let hash = hash.finalize();
let host_priv_key = ed25519_dalek::SigningKey::from_bytes(PRIVKEY_BYTES);
assert_eq!(PUB_HOSTKEY_BYTES, host_priv_key.verifying_key().as_bytes());
let signature = host_priv_key.sign(&hash);
// eprintln!("client_public_key: {:x?}", client_public_key.0);
// eprintln!("server_public_key: {:x?}", server_public_key.as_bytes());
// eprintln!("shared_secret: {:x?}", shared_secret.as_bytes());
// eprintln!("hash: {:x?}", hash);
let packet = DhKeyExchangeInitReplyPacket {
pubkey: pub_hostkey,
f: MpInt(server_public_key.as_bytes()),
signature: SshSignature {
format: b"ssh-ed25519",
data: &signature.to_bytes(),
},
};
self.queue_msg(MsgKind::Packet(Packet {
payload: packet.to_bytes(),
}));
self.state = ServerState::NewKeys;
// TODO: set keys for transport
}
None => {},
},
ServerState::NewKeys => match self.packet_transport.next_packet() {
Some(data) => {
if data.payload != &[Packet::SSH_MSG_NEWKEYS] {
return Err(client_error!("did not send SSH_MSG_NEWKEYS"));
}
self.queue_msg(MsgKind::Packet(Packet {
payload: vec![Packet::SSH_MSG_NEWKEYS],
}));
self.state = ServerState::ServiceRequest {};
}
None => {},
},
ServerState::ServiceRequest {} => {},
}
Ok(())
}
pub fn next_message_to_send(&mut self) -> Option<Msg> {
self.send_queue.pop()
}
fn queue_msg(&mut self, msg: MsgKind) {
self.send_queue.push(Msg(msg));
}
}
#[derive(Debug)]
pub struct Msg(MsgKind);
#[derive(Debug, PartialEq)]
enum MsgKind {
ServerProtocolInfo,
Packet(Packet),
}
impl Msg {
// TODO: MAKE THIS ZERO ALLOC AAAAAA
pub fn to_bytes(self) -> Vec<u8> {
match self.0 {
MsgKind::ServerProtocolInfo => SERVER_IDENTIFICATION.to_vec(),
MsgKind::Packet(v) => v.to_bytes(),
}
}
}
/// Frames the byte stream into packets.
struct PacketTransport {
state: PacketTransportState,
packets: VecDeque<Packet>,
}
enum PacketTransportState {
Plaintext(PacketParser),
Keyed { key: () },
}
impl PacketTransport {
fn recv_bytes(&mut self, mut bytes: &[u8]) -> Result<()> {
while let Some(consumed) = self.recv_bytes_step(bytes)? {
bytes = &bytes[consumed..];
if bytes.is_empty() {
break;
}
}
Ok(())
}
fn next_packet(&mut self) -> Option<Packet> {
self.packets.pop_front()
}
fn recv_bytes_step(&mut self, bytes: &[u8]) -> Result<Option<usize>> {
// TODO: This might not work if we buffer two packets where one changes keys in between?
match &mut self.state {
PacketTransportState::Plaintext(packet) => {
let result = packet.recv_bytes(bytes, ())?;
if let Some((consumed, result)) = result {
self.packets.push_back(result);
*packet = PacketParser::new();
return Ok(Some(consumed));
}
}
PacketTransportState::Keyed { key } => todo!(),
}
Ok(None)
}
}
#[derive(Debug, PartialEq)]
struct Packet {
payload: Vec<u8>,
}
impl Packet {
const SSH_MSG_KEXINIT: u8 = 20;
const SSH_MSG_NEWKEYS: u8 = 21;
const SSH_MSG_KEXDH_INIT: u8 = 30;
const SSH_MSG_KEXDH_REPLY: u8 = 31;
fn from_raw(bytes: &[u8]) -> Result<Self> {
let Some(padding_length) = bytes.get(0) else {
return Err(client_error!("empty packet"));
};
// TODO: mac?
let Some(payload_len) = (bytes.len() - 1).checked_sub(*padding_length as usize) else {
return Err(client_error!("packet padding longer than packet"));
};
let payload = &bytes[1..][..payload_len];
if (bytes.len() + 4) % 8 != 0 {
return Err(client_error!("full packet length must be multiple of 8"));
}
Ok(Self {
payload: payload.to_vec(),
})
}
fn to_bytes(&self) -> Vec<u8> {
let mut new = Vec::new();
let min_full_length = self.payload.len() + 4 + 1;
// The padding must give a factor of 8.
let min_padding_len = (min_full_length.next_multiple_of(8) - min_full_length) as u8;
// > There MUST be at least four bytes of padding.
// So let's satisfy this by just adding 8. We can always properly randomize it later if desired.
let padding_len = min_padding_len + 8;
let packet_len = self.payload.len() + (padding_len as usize) + 1;
new.extend_from_slice(&u32::to_be_bytes(packet_len as u32));
new.extend_from_slice(&[padding_len]);
new.extend_from_slice(&self.payload);
new.extend(std::iter::repeat(0).take(padding_len as usize));
// mac...
assert!((4 + 1 + self.payload.len() + (padding_len as usize)) % 8 == 0);
assert!(new.len() % 8 == 0);
new
}
}
#[derive(Debug)]
struct KeyExchangeInitPacket<'a> {
cookie: [u8; 16],
kex_algorithms: NameList<'a>,
server_host_key_algorithms: NameList<'a>,
encryption_algorithms_client_to_server: NameList<'a>,
encryption_algorithms_server_to_client: NameList<'a>,
mac_algorithms_client_to_server: NameList<'a>,
mac_algorithms_server_to_client: NameList<'a>,
compression_algorithms_client_to_server: NameList<'a>,
compression_algorithms_server_to_client: NameList<'a>,
languages_client_to_server: NameList<'a>,
languages_server_to_client: NameList<'a>,
first_kex_packet_follows: bool,
}
impl<'a> KeyExchangeInitPacket<'a> {
fn parse(payload: &'a [u8]) -> Result<KeyExchangeInitPacket<'_>> {
let mut c = Parser::new(payload);
let kind = c.u8()?;
if kind != Packet::SSH_MSG_KEXINIT {
return Err(client_error!(
"expected SSH_MSG_KEXINIT packet, found {kind}"
));
}
let cookie = c.read_array::<16>()?;
let kex_algorithms = c.name_list()?;
let server_host_key_algorithms = c.name_list()?;
let encryption_algorithms_client_to_server = c.name_list()?;
let encryption_algorithms_server_to_client = c.name_list()?;
let mac_algorithms_client_to_server = c.name_list()?;
let mac_algorithms_server_to_client = c.name_list()?;
let compression_algorithms_client_to_server = c.name_list()?;
let compression_algorithms_server_to_client = c.name_list()?;
let languages_client_to_server = c.name_list()?;
let languages_server_to_client = c.name_list()?;
let first_kex_packet_follows = c.bool()?;
let _ = c.u32()?; // Reserved.
Ok(Self {
cookie,
kex_algorithms,
server_host_key_algorithms,
encryption_algorithms_client_to_server,
encryption_algorithms_server_to_client,
mac_algorithms_client_to_server,
mac_algorithms_server_to_client,
compression_algorithms_client_to_server,
compression_algorithms_server_to_client,
languages_client_to_server,
languages_server_to_client,
first_kex_packet_follows,
})
}
fn to_bytes(&self) -> Vec<u8> {
let mut data = Writer::new();
data.u8(Packet::SSH_MSG_KEXINIT);
data.write(&self.cookie);
data.name_list(self.kex_algorithms);
data.name_list(self.server_host_key_algorithms);
data.name_list(self.encryption_algorithms_client_to_server);
data.name_list(self.encryption_algorithms_server_to_client);
data.name_list(self.mac_algorithms_client_to_server);
data.name_list(self.mac_algorithms_server_to_client);
data.name_list(self.compression_algorithms_client_to_server);
data.name_list(self.compression_algorithms_server_to_client);
data.name_list(self.languages_client_to_server);
data.name_list(self.languages_server_to_client);
data.u8(self.first_kex_packet_follows as u8);
data.u32(0); // Reserved.
data.finish()
}
}
#[derive(Debug)]
struct DhKeyExchangeInitPacket<'a> {
e: MpInt<'a>,
}
impl<'a> DhKeyExchangeInitPacket<'a> {
fn parse(payload: &'a [u8]) -> Result<DhKeyExchangeInitPacket<'_>> {
let mut c = Parser::new(payload);
let kind = c.u8()?;
if kind != Packet::SSH_MSG_KEXDH_INIT {
return Err(client_error!(
"expected SSH_MSG_KEXDH_INIT packet, found {kind}"
));
}
let e = c.mpint()?;
Ok(Self { e })
}
}
#[derive(Debug)]
struct SshPublicKey<'a> {
format: &'a [u8],
data: &'a [u8],
}
impl SshPublicKey<'_> {
fn to_bytes(&self) -> Vec<u8> {
let mut data = Writer::new();
data.u32((4 + self.format.len() + 4 + self.data.len()) as u32);
// ed25519-specific!
// <https://datatracker.ietf.org/doc/html/rfc8709#section-4>
data.string(&self.format);
data.string(&self.data);
data.finish()
}
}
#[derive(Debug)]
struct SshSignature<'a> {
format: &'a [u8],
data: &'a [u8],
}
#[derive(Debug)]
struct DhKeyExchangeInitReplyPacket<'a> {
pubkey: SshPublicKey<'a>,
f: MpInt<'a>,
signature: SshSignature<'a>,
}
impl<'a> DhKeyExchangeInitReplyPacket<'a> {
fn to_bytes(&self) -> Vec<u8> {
let mut data = Writer::new();
data.u8(Packet::SSH_MSG_KEXDH_REPLY);
data.write(&self.pubkey.to_bytes());
data.mpint(self.f);
data.u32((4 + self.signature.format.len() + 4 + self.signature.data.len()) as u32);
// <https://datatracker.ietf.org/doc/html/rfc8709#section-6>
data.string(&self.signature.format);
data.string(&self.signature.data);
data.finish()
}
}
struct EncryptedPacketParser {}
struct PacketParser {
// The length of the packet.
packet_length: Option<usize>,
// Before we've read the length fully, this stores the length.
// Afterwards, this stores the packet data *after* the length.
data: Vec<u8>,
}
impl PacketParser {
fn new() -> Self {
Self {
packet_length: None,
data: Vec::new(),
}
}
fn recv_bytes(&mut self, bytes: &[u8], mac: ()) -> Result<Option<(usize, Packet)>> {
let Some((consumed, data)) = self.recv_bytes_inner(bytes, mac)? else {
return Ok(None);
};
Ok(Some((consumed, Packet::from_raw(&data)?)))
}
fn recv_bytes_inner(&mut self, mut bytes: &[u8], _mac: ()) -> Result<Option<(usize, Vec<u8>)>> {
let mut consumed = 0;
let packet_length = match self.packet_length {
Some(packet_length) => packet_length,
None => {
let remaining_len = std::cmp::min(bytes.len(), 4 - self.data.len());
// Try to read the bytes of the length.
self.data.extend_from_slice(&bytes[..remaining_len]);
if self.data.len() < 4 {
// Not enough data yet :(.
return Ok(None);
}
let packet_length = u32::from_be_bytes(self.data.as_slice().try_into().unwrap());
let packet_length = packet_length.try_into().unwrap();
self.data.clear();
self.packet_length = Some(packet_length);
// We have the data.
bytes = &bytes[remaining_len..];
consumed += remaining_len;
packet_length
}
};
let remaining_len = std::cmp::min(bytes.len(), packet_length - self.data.len());
self.data.extend_from_slice(&bytes[..remaining_len]);
consumed += remaining_len;
if self.data.len() == packet_length {
// We have the full data.
Ok(Some((consumed, std::mem::take(&mut self.data))))
} else {
Ok(None)
}
}
#[cfg(test)]
fn test_recv_bytes(&mut self, bytes: &[u8], mac: ()) -> Option<(usize, Vec<u8>)> {
self.recv_bytes_inner(bytes, mac).unwrap()
}
}
// hardcoded test keys. lol.
const _PUBKEY: &str =
"ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOk5zfpvwNc3MztTTpE90zLI1Ref4AwwRVdSFyJLGbj2 testkey";
/// Manually extracted, even worse, <https://superuser.com/questions/1477472/openssh-public-key-file-format>, help
const PUB_HOSTKEY_BYTES: &[u8; 32] = &[
0xe9, 0x39, 0xcd, 0xfa, 0x6f, 0xc0, 0xd7, 0x37, 0x33, 0x3b, 0x53, 0x4e, 0x91, 0x3d, 0xd3, 0x32,
0xc8, 0xd5, 0x17, 0x9f, 0xe0, 0x0c, 0x30, 0x45, 0x57, 0x52, 0x17, 0x22, 0x4b, 0x19, 0xb8, 0xf6,
];
const _PRIVKEY: &str = "-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
QyNTUxOQAAACDpOc36b8DXNzM7U06RPdMyyNUXn+AMMEVXUhciSxm49gAAAJDpgLSk6YC0
pAAAAAtzc2gtZWQyNTUxOQAAACDpOc36b8DXNzM7U06RPdMyyNUXn+AMMEVXUhciSxm49g
AAAECSeskxuEtJrr9L7ZkbpogXC5pKRNVHx1ueMX2h1XUnmek5zfpvwNc3MztTTpE90zLI
1Ref4AwwRVdSFyJLGbj2AAAAB3Rlc3RrZXkBAgMEBQY=
-----END OPENSSH PRIVATE KEY-----
";
/// Manually extracted from the key using <https://peterlyons.com/problog/2017/12/openssh-ed25519-private-key-file-format/>, probably wrong
const PRIVKEY_BYTES: &[u8; 32] = &[
0x92, 0x7a, 0xc9, 0x31, 0xb8, 0x4b, 0x49, 0xae, 0xbf, 0x4b, 0xed, 0x99, 0x1b, 0xa6, 0x88, 0x17,
0x0b, 0x9a, 0x4a, 0x44, 0xd5, 0x47, 0xc7, 0x5b, 0x9e, 0x31, 0x7d, 0xa1, 0xd5, 0x75, 0x27, 0x99,
];
#[cfg(test)]
mod tests {
use hex_literal::hex;
use crate::{MsgKind, PacketParser, ServerConnection, SshRng};
trait OptionExt {
fn unwrap_none(self);
}
impl<T> OptionExt for Option<T> {
#[track_caller]
fn unwrap_none(self) {
assert!(self.is_none());
}
}
struct NoRng;
impl SshRng for NoRng {
fn fill_bytes(&mut self, _: &mut [u8]) {
unreachable!()
}
}
struct HardcodedRng(Vec<u8>);
impl SshRng for HardcodedRng {
fn fill_bytes(&mut self, dest: &mut [u8]) {
dest.copy_from_slice(&self.0[..dest.len()]);
self.0.splice(0..dest.len(), []);
}
}
#[test]
fn protocol_exchange() {
let mut con = ServerConnection::new(NoRng);
con.recv_bytes(b"SSH-2.0-OpenSSH_9.7\r\n").unwrap();
let msg = con.next_message_to_send().unwrap();
assert_eq!(msg.0, MsgKind::ServerProtocolInfo);
}
#[test]
fn protocol_exchange_slow_client() {
let mut con = ServerConnection::new(NoRng);
con.recv_bytes(b"SSH-2.0-").unwrap();
con.recv_bytes(b"OpenSSH_9.7\r\n").unwrap();
let msg = con.next_message_to_send().unwrap();
assert_eq!(msg.0, MsgKind::ServerProtocolInfo);
}
#[test]
fn packet_parser() {
let mut p = PacketParser::new();
p.test_recv_bytes(&2_u32.to_be_bytes(), ()).unwrap_none();
p.test_recv_bytes(&[1], ()).unwrap_none();
let (consumed, data) = p.test_recv_bytes(&[2], ()).unwrap();
assert_eq!(consumed, 1);
assert_eq!(data, &[1, 2]);
}
#[test]
fn packet_parser_split_len() {
let mut p = PacketParser::new();
let len = &2_u32.to_be_bytes();
p.test_recv_bytes(&len[0..2], ()).unwrap_none();
p.test_recv_bytes(&len[2..4], ()).unwrap_none();
p.test_recv_bytes(&[1], ()).unwrap_none();
let (consumed, data) = p.test_recv_bytes(&[2], ()).unwrap();
assert_eq!(consumed, 1);
assert_eq!(data, &[1, 2]);
}
#[test]
fn packet_parser_all() {
let mut p = PacketParser::new();
let (consumed, data) = p.test_recv_bytes(&[0, 0, 0, 2, 1, 2], ()).unwrap();
assert_eq!(consumed, 6);
assert_eq!(data, &[1, 2]);
}
#[test]
fn handshake() {
#[rustfmt::skip]
let rng = vec![
0x14, 0xa2, 0x04, 0xa5, 0x4b, 0x2f, 0x5f, 0xa7, 0xff, 0x53, 0x13, 0x67, 0x57, 0x67, 0xbc, 0x55,
0x3f, 0xc0, 0x6c, 0x0d, 0x07, 0x8f, 0xe2, 0x75, 0x95, 0x18, 0x4b, 0xd2, 0xcb, 0xd0, 0x64, 0x06,
];
struct Part {
client: &'static [u8],
server: &'static [u8],
}
// Extracted from a real OpenSSH client using this server (with hardcoded creds) using Wireshark.
let conversation = [
Part {
client: &hex!("5353482d322e302d4f70656e5353485f392e370d0a"),
server: &hex!("5353482d322e302d4f70656e5353485f392e370d0a"),
},
// KEX Init
Part {
client: &hex!(
"
000005fc071401af35150e67f2bc6dc4bc6b5330901900000131736e74727570373631783235353
1392d736861353132406f70656e7373682e636f6d2c637572766532353531392d7368613235362c
637572766532353531392d736861323536406c69627373682e6f72672c656364682d736861322d6
e697374703235362c656364682d736861322d6e697374703338342c656364682d736861322d6e69
7374703532312c6469666669652d68656c6c6d616e2d67726f75702d65786368616e67652d73686
13235362c6469666669652d68656c6c6d616e2d67726f757031362d7368613531322c6469666669
652d68656c6c6d616e2d67726f757031382d7368613531322c6469666669652d68656c6c6d616e2
d67726f757031342d7368613235362c6578742d696e666f2d632c6b65782d7374726963742d632d
763030406f70656e7373682e636f6d000001cf7373682d656432353531392d636572742d7630314
06f70656e7373682e636f6d2c65636473612d736861322d6e697374703235362d636572742d7630
31406f70656e7373682e636f6d2c65636473612d736861322d6e697374703338342d636572742d7
63031406f70656e7373682e636f6d2c65636473612d736861322d6e697374703532312d63657274
2d763031406f70656e7373682e636f6d2c736b2d7373682d656432353531392d636572742d76303
1406f70656e7373682e636f6d2c736b2d65636473612d736861322d6e697374703235362d636572
742d763031406f70656e7373682e636f6d2c7273612d736861322d3531322d636572742d7630314
06f70656e7373682e636f6d2c7273612d736861322d3235362d636572742d763031406f70656e73
73682e636f6d2c7373682d656432353531392c65636473612d736861322d6e697374703235362c6
5636473612d736861322d6e697374703338342c65636473612d736861322d6e697374703532312c
736b2d7373682d65643235353139406f70656e7373682e636f6d2c736b2d65636473612d7368613
22d6e69737470323536406f70656e7373682e636f6d2c7273612d736861322d3531322c7273612d
736861322d3235360000006c63686163686132302d706f6c7931333035406f70656e7373682e636
f6d2c6165733132382d6374722c6165733139322d6374722c6165733235362d6374722c61657331
32382d67636d406f70656e7373682e636f6d2c6165733235362d67636d406f70656e7373682e636
f6d0000006c63686163686132302d706f6c7931333035406f70656e7373682e636f6d2c61657331
32382d6374722c6165733139322d6374722c6165733235362d6374722c6165733132382d67636d4
06f70656e7373682e636f6d2c6165733235362d67636d406f70656e7373682e636f6d000000d575
6d61632d36342d65746d406f70656e7373682e636f6d2c756d61632d3132382d65746d406f70656
e7373682e636f6d2c686d61632d736861322d3235362d65746d406f70656e7373682e636f6d2c68
6d61632d736861322d3531322d65746d406f70656e7373682e636f6d2c686d61632d736861312d6
5746d406f70656e7373682e636f6d2c756d61632d3634406f70656e7373682e636f6d2c756d6163
2d313238406f70656e7373682e636f6d2c686d61632d736861322d3235362c686d61632d7368613
22d3531322c686d61632d73686131000000d5756d61632d36342d65746d406f70656e7373682e63
6f6d2c756d61632d3132382d65746d406f70656e7373682e636f6d2c686d61632d736861322d323
5362d65746d406f70656e7373682e636f6d2c686d61632d736861322d3531322d65746d406f7065
6e7373682e636f6d2c686d61632d736861312d65746d406f70656e7373682e636f6d2c756d61632
d3634406f70656e7373682e636f6d2c756d61632d313238406f70656e7373682e636f6d2c686d61
632d736861322d3235362c686d61632d736861322d3531322c686d61632d736861310000001a6e6
f6e652c7a6c6962406f70656e7373682e636f6d2c7a6c69620000001a6e6f6e652c7a6c6962406f
70656e7373682e636f6d2c7a6c69620000000000000000000000000000000000000000
"
),
server: &hex!(
"
000000c40d140000000000000000000000000000000000000011637572766532353531392d73686
13235360000000b7373682d656432353531390000001d63686163686132302d706f6c7931333035
406f70656e7373682e636f6d0000001d63686163686132302d706f6c7931333035406f70656e737
3682e636f6d0000000d686d61632d736861322d3235360000000d686d61632d736861322d323536
000000046e6f6e65000000046e6f6e6500000000000000000000000000000000000000000000000
00000
"
),
},
// ECDH KEX Init
Part {
client: &hex!(
"
0000002c061e0000002086ac62fd02ac3333e2470f6024d0027696b29056f281f6fde0c05956fcf
d3a53000000000000
"
),
server: &hex!(
"
000000bc081f000000330000000b7373682d6564323535313900000020e939cdfa6fc0d737333b5
34e913dd332c8d5179fe00c3045575217224b19b8f6000000203b92eb7008cc13056bc9f198049f
75d5832f3650969dfcccd80841431b350160000000530000000b7373682d6564323535313900000
04096ba808246f3b76270475d495330bfe174043609e81be35eadcabc0537ddcf8c4502831e9fef
f2ef0e49cbe93e1747c01e2c9a6d19839648694defeb2adc77060000000000000000
"
),
},
// New Keys
Part {
client: &hex!("0000000c0a1500000000000000000000"),
server: &hex!("0000000c0a1500000000000000000000"),
},
];
let mut con = ServerConnection::new(HardcodedRng(rng));
for part in conversation {
con.recv_bytes(&part.client).unwrap();
let bytes = con.next_message_to_send().unwrap().to_bytes();
assert_eq!(part.server, bytes);
}
}
}