finish off ecdsa

This commit is contained in:
nora 2024-08-26 19:18:45 +02:00
parent 06c1f31dca
commit d5794d3ef0
12 changed files with 582 additions and 542 deletions

View file

@ -14,3 +14,8 @@ useless_format = "allow"
[workspace.dependencies]
tracing = "0.1.40"
eyre = "0.6.12"
# Blowfish (bcrypt) is the critical path for private key encryption (KDF),
# and not optimizing it makes the test suite a lot slower.
[profile.dev.package.blowfish]
opt-level = 3

View file

@ -2,6 +2,7 @@ mod readline;
use std::{net::SocketAddr, sync::Arc};
use cluelessh_keys::private::EncryptedPrivateKeys;
use cluelessh_tokio::{server::ServerAuthVerify, Channel};
use eyre::{Context, Result};
use tokio::{
@ -62,12 +63,12 @@ async fn main() -> eyre::Result<()> {
let transport_config = cluelessh_protocol::transport::server::ServerConfig {
host_keys: vec![
cluelessh_keys::EncryptedPrivateKeys::parse(ED25519_PRIVKEY.as_bytes())
EncryptedPrivateKeys::parse(ED25519_PRIVKEY.as_bytes())
.unwrap()
.decrypt(None)
.unwrap()
.remove(0),
cluelessh_keys::EncryptedPrivateKeys::parse(ECDSA_PRIVKEY.as_bytes())
EncryptedPrivateKeys::parse(ECDSA_PRIVKEY.as_bytes())
.unwrap()
.decrypt(None)
.unwrap()

View file

@ -6,7 +6,9 @@ use std::{
use base64::Engine;
use clap::Parser;
use cluelessh_keys::{KeyEncryptionParams, PrivateKey};
use cluelessh_keys::private::{
EncryptedPrivateKeys, KeyEncryptionParams, PlaintextPrivateKey, PrivateKey,
};
use eyre::{bail, Context};
#[derive(clap::Parser)]
@ -54,12 +56,14 @@ enum DebugCommand {
#[derive(clap::ValueEnum, Clone)]
enum KeyType {
Ed25519,
Ecdsa,
}
impl Display for KeyType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Ed25519 => f.write_str("ed25519"),
Self::Ecdsa => f.write_str("ecdsa"),
}
}
}
@ -82,7 +86,7 @@ fn main() -> eyre::Result<()> {
} => {
let file = std::fs::read(&id_file)
.wrap_err_with(|| format!("reading file {}", id_file.display()))?;
let keys = cluelessh_keys::EncryptedPrivateKeys::parse(&file)?;
let keys = EncryptedPrivateKeys::parse(&file)?;
let passphrase = if keys.requires_passphrase() {
let phrase = rpassword::prompt_password("passphrase: ")?;
Some(phrase)
@ -115,7 +119,7 @@ fn info(id_file: &Path, decrypt: bool, show_private: bool) -> eyre::Result<()> {
let file =
std::fs::read(id_file).wrap_err_with(|| format!("reading file {}", id_file.display()))?;
let keys = cluelessh_keys::EncryptedPrivateKeys::parse(&file)?;
let keys = EncryptedPrivateKeys::parse(&file)?;
if decrypt {
let passphrase = if keys.requires_passphrase() {
@ -156,18 +160,24 @@ fn info(id_file: &Path, decrypt: bool, show_private: bool) -> eyre::Result<()> {
fn generate(type_: KeyType, comment: String, path: &Path) -> eyre::Result<()> {
let type_ = match type_ {
KeyType::Ed25519 => cluelessh_keys::KeyType::Ed25519,
KeyType::Ecdsa => cluelessh_keys::KeyType::Ecdsa,
};
let passphrase = rpassword::prompt_password("Enter passphrase (empty for no passphrase): ")?;
let key = cluelessh_keys::PlaintextPrivateKey::generate(
let key = PlaintextPrivateKey::generate(
comment,
cluelessh_keys::KeyGenerationParams { key_type: type_ },
);
println!("{} {}", key.private_key.public_key(), key.comment);
let keys = key.encrypt(KeyEncryptionParams::secure_or_none(passphrase))?;
let params = if passphrase.is_empty() {
KeyEncryptionParams::plaintext()
} else {
KeyEncryptionParams::secure_encrypted(passphrase)
};
let keys = key.encrypt(params)?;
let mut pubkey_path = path.to_path_buf().into_os_string();
pubkey_path.push(".pub");

View file

@ -3,7 +3,8 @@
use std::io;
use cluelessh_keys::{
authorized_keys::{self, AuthorizedKeys}, public::PublicKey, PublicKeyWithComment
authorized_keys::{self, AuthorizedKeys},
public::{PublicKey, PublicKeyWithComment},
};
use users::os::unix::UserExt;

View file

@ -4,7 +4,7 @@ mod pty;
use std::{io, net::SocketAddr, process::ExitStatus, sync::Arc};
use auth::AuthError;
use cluelessh_keys::{public::PublicKey, EncryptedPrivateKeys};
use cluelessh_keys::{private::EncryptedPrivateKeys, public::PublicKey};
use cluelessh_tokio::{server::ServerAuthVerify, Channel};
use cluelessh_transport::server::ServerConfig;
use eyre::{bail, eyre, Context, OptionExt, Result};

View file

@ -1,6 +1,6 @@
use base64::Engine;
use crate::{public::PublicKey, PublicKeyWithComment};
use crate::public::{PublicKey, PublicKeyWithComment};
pub struct AuthorizedKeys {
pub keys: Vec<PublicKeyWithComment>,
@ -55,7 +55,7 @@ impl AuthorizedKeys {
#[cfg(test)]
mod tests {
use crate::{public::PublicKey, PublicKeyWithComment};
use crate::public::{PublicKey, PublicKeyWithComment};
use super::AuthorizedKeys;

View file

@ -3,7 +3,7 @@ use std::str::FromStr;
use aes::cipher::{KeySizeUser, StreamCipher};
use cluelessh_format::{Reader, Writer};
use crate::PrivateKey;
use crate::private::PrivateKey;
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Cipher {
@ -55,7 +55,7 @@ impl Cipher {
}
}
}
pub(crate) fn block_size(&self) -> usize {
// this is the "minimum" block size in core SSH, so I assume it's here as well?
match self {
@ -143,6 +143,7 @@ impl Kdf {
pub enum KeyType {
Ed25519,
Ecdsa,
}
pub struct KeyGenerationParams {
@ -159,5 +160,13 @@ pub(crate) fn generate_private_key(params: KeyGenerationParams) -> PrivateKey {
private_key: private_key.to_bytes(),
}
}
KeyType::Ecdsa => {
let private_key = p256::ecdsa::SigningKey::random(&mut rand::rngs::OsRng);
PrivateKey::EcdsaSha2NistP256 {
public_key: *private_key.verifying_key(),
private_key,
}
}
}
}

View file

@ -1,532 +1,9 @@
pub mod authorized_keys;
mod crypto;
pub mod private;
pub mod public;
pub mod signature;
use std::fmt::Debug;
use cluelessh_format::{Reader, Writer};
use crypto::{Cipher, Kdf};
use crate::public::PublicKey;
// TODO: good typed error messages so the user knows what's going on
pub use crypto::{KeyGenerationParams, KeyType};
#[derive(Debug, Clone, PartialEq)]
pub struct PublicKeyWithComment {
pub key: PublicKey,
pub comment: String,
}
pub struct EncryptedPrivateKeys {
pub public_keys: Vec<PublicKey>,
pub cipher: Cipher,
pub kdf: Kdf,
pub encrypted_private_keys: Vec<u8>,
}
#[derive(Clone)]
pub struct PlaintextPrivateKey {
pub private_key: PrivateKey,
pub comment: String,
checkint: u32,
}
impl Debug for PlaintextPrivateKey {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("PlaintextPrivateKey")
.field(
"public_key",
&format_args!("{}", self.private_key.public_key()),
)
.field("comment", &self.comment)
.finish()
}
}
#[derive(Clone)]
pub enum PrivateKey {
Ed25519 {
public_key: ed25519_dalek::VerifyingKey,
private_key: [u8; 32], // TODO: store a signing key!
},
EcdsaSha2NistP256 {
public_key: p256::ecdsa::VerifyingKey,
private_key: p256::ecdsa::SigningKey,
},
}
const MAGIC: &[u8; 15] = b"openssh-key-v1\0";
impl EncryptedPrivateKeys {
/// Parse OpenSSH private keys, either armored or not.
pub fn parse(content: &[u8]) -> cluelessh_format::Result<Self> {
// https://github.com/openssh/openssh-portable/blob/a76a6b85108e3032c8175611ecc5746e7131f876/PROTOCOL.key
let pem: pem::Pem; // lifetime extension
let content = if content.starts_with(b"openssh-key-v1") {
content
} else if content.starts_with(b"-----BEGIN OPENSSH PRIVATE KEY-----") {
pem = pem::parse(content).map_err(|err| {
cluelessh_format::ParseError(format!("invalid PEM format: {err}"))
})?;
pem.contents()
} else {
return Err(cluelessh_format::ParseError("invalid SSH key".to_owned()));
};
let mut p = Reader::new(content);
let magic = p.array::<{ MAGIC.len() }>()?;
if magic != *MAGIC {
return Err(cluelessh_format::ParseError(
"invalid magic, not an SSH key?".to_owned(),
));
}
let ciphername = p.utf8_string()?;
let cipher = ciphername.parse::<Cipher>()?;
let kdfname = p.utf8_string()?;
let kdfoptions = p.string()?;
let kdf = Kdf::from_str_and_options(kdfname, kdfoptions)?;
let keynum = p.u32()?;
let mut public_keys = Vec::new();
for _ in 0..keynum {
let pubkey = p.string()?;
let pubkey = PublicKey::from_wire_encoding(pubkey)?;
public_keys.push(pubkey);
}
let priv_keys = p.string()?;
Ok(EncryptedPrivateKeys {
public_keys,
cipher,
kdf,
encrypted_private_keys: priv_keys.to_owned(),
})
}
pub fn to_bytes_armored(&self) -> String {
let content = self.to_bytes();
let pem = pem::Pem::new("OPENSSH PRIVATE KEY", content);
pem::encode(&pem)
}
pub fn to_bytes(&self) -> Vec<u8> {
let mut p = Writer::new();
p.array(*MAGIC);
p.string(self.cipher.name().as_bytes());
p.string(self.kdf.name().as_bytes());
p.string(self.kdf.options());
p.u32(self.public_keys.len() as u32);
for pubkey in &self.public_keys {
p.string(pubkey.to_wire_encoding());
}
p.string(&self.encrypted_private_keys);
p.finish()
}
pub fn requires_passphrase(&self) -> bool {
(!matches!(self.kdf, Kdf::None)) && (!matches!(self.cipher, Cipher::None))
}
pub fn decrypt_encrypted_part(
&self,
passphrase: Option<&str>,
) -> cluelessh_format::Result<Vec<u8>> {
let mut data = self.encrypted_private_keys.clone();
if self.requires_passphrase() {
let Some(passphrase) = passphrase else {
panic!("missing passphrase for encrypted key");
};
if passphrase.is_empty() {
return Err(cluelessh_format::ParseError(format!("empty passphrase")));
}
let (key_size, iv_size) = self.cipher.key_iv_size();
let mut output = vec![0; key_size + iv_size];
self.kdf.derive(passphrase, &mut output)?;
let (key, iv) = output.split_at(key_size);
self.cipher.crypt_in_place(&mut data, key, iv);
}
Ok(data)
}
pub fn decrypt(
&self,
passphrase: Option<&str>,
) -> cluelessh_format::Result<Vec<PlaintextPrivateKey>> {
let data = self.decrypt_encrypted_part(passphrase)?;
let mut p = Reader::new(&data);
let checkint1 = p.u32()?;
let checkint2 = p.u32()?;
if checkint1 != checkint2 {
return Err(cluelessh_format::ParseError(format!(
"invalid key or password"
)));
}
let mut result_keys = Vec::new();
for pubkey in &self.public_keys {
let keytype = match *pubkey {
PublicKey::Ed25519 { public_key } => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-eddsa-keys>
let alg = p.utf8_string()?;
if alg != pubkey.algorithm_name() {
return Err(cluelessh_format::ParseError(format!(
"algorithm mismatch. pubkey: {}, privkey: {alg}",
pubkey.algorithm_name()
)));
}
let enc_a = p.string()?; // ENC(A)
if enc_a != public_key.as_bytes() {
return Err(cluelessh_format::ParseError(format!("public key mismatch")));
}
let k_enc_a = p.string()?; // k || ENC(A)
if k_enc_a.len() != 64 {
return Err(cluelessh_format::ParseError(format!(
"invalid len for ed25519 keypair: {}, expected 64",
k_enc_a.len()
)));
}
let (k, enc_a) = k_enc_a.split_at(32);
if enc_a != public_key.as_bytes() {
// Yes, ed25519 SSH keys seriously store the public key THREE TIMES.
return Err(cluelessh_format::ParseError(format!("public key mismatch")));
}
let private_key = k.try_into().unwrap();
PrivateKey::Ed25519 {
public_key,
private_key,
}
}
PublicKey::EcdsaSha2NistP256 { public_key } => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-ecdsa-keys>
let alg = p.utf8_string()?;
if alg != pubkey.algorithm_name() {
return Err(cluelessh_format::ParseError(format!(
"algorithm mismatch. pubkey: {}, privkey: {alg}",
pubkey.algorithm_name()
)));
}
let curve_name = p.utf8_string()?;
if curve_name != "nistp256" {
return Err(cluelessh_format::ParseError(format!(
"curve name mismatch. expected: nistp256, found: {curve_name}",
)));
}
let q = p.string()?;
if q != public_key.to_encoded_point(false).as_bytes() {
return Err(cluelessh_format::ParseError(format!("public key mismatch")));
}
let d = p.mpint()?;
let private_key = p256::ecdsa::SigningKey::from_slice(d).map_err(|_| {
cluelessh_format::ParseError(format!("invalid private key bytes"))
})?;
PrivateKey::EcdsaSha2NistP256 {
public_key,
private_key,
}
}
};
let comment = p.utf8_string()?;
result_keys.push(PlaintextPrivateKey {
private_key: keytype,
comment: comment.to_owned(),
checkint: checkint1,
});
}
// verify padding
for i in 1_u8..=255 {
if p.has_data() {
let b = p.u8()?;
if b != i {
return Err(cluelessh_format::ParseError(format!(
"private key padding is incorrect: {b} != {i}"
)));
}
}
}
Ok(result_keys)
}
}
pub struct KeyEncryptionParams {
pub cipher: Cipher,
pub kdf: Kdf,
pub passphrase: Option<String>,
}
impl KeyEncryptionParams {
pub fn secure_or_none(passphrase: String) -> Self {
if passphrase.is_empty() {
Self {
cipher: Cipher::None,
kdf: Kdf::None,
passphrase: None,
}
} else {
Self {
cipher: Cipher::Aes256Ctr,
kdf: Kdf::BCrypt {
salt: rand::random(),
rounds: 24,
},
passphrase: Some(passphrase),
}
}
}
}
impl PlaintextPrivateKey {
pub fn generate(comment: String, params: KeyGenerationParams) -> Self {
let keytype = crypto::generate_private_key(params);
Self {
comment,
private_key: keytype,
checkint: rand::random(),
}
}
pub fn encrypt(
&self,
params: KeyEncryptionParams,
) -> cluelessh_format::Result<EncryptedPrivateKeys> {
let public_keys = vec![self.private_key.public_key()];
let mut enc = Writer::new();
enc.u32(self.checkint);
enc.u32(self.checkint);
match &self.private_key {
PrivateKey::Ed25519 {
public_key,
private_key,
} => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-eddsa-keys>
enc.string(b"ssh-ed25519");
enc.string(public_key);
let combined = private_key.len() + public_key.as_bytes().len();
enc.u32(combined as u32);
enc.raw(private_key);
enc.raw(public_key.as_bytes());
}
PrivateKey::EcdsaSha2NistP256 {
public_key,
private_key,
} => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-ecdsa-keys>
enc.string(self.private_key.algorithm_name());
enc.string("nistp256");
enc.string(public_key.to_encoded_point(false));
enc.mpint(p256::U256::from(private_key.as_nonzero_scalar().as_ref()));
}
}
enc.string(self.comment.as_bytes());
let current_len = enc.current_length();
let block_size = params.cipher.block_size();
let pad_len = current_len.next_multiple_of(block_size) - current_len;
for i in 1..=(pad_len as u8) {
enc.u8(i);
}
let mut encrypted_private_keys = enc.finish();
match params.cipher {
Cipher::None => {}
Cipher::Aes256Ctr => {
let (key_size, iv_size) = params.cipher.key_iv_size();
let mut output = vec![0; key_size + iv_size];
params
.kdf
.derive(&params.passphrase.unwrap(), &mut output)?;
let (key, iv) = output.split_at(key_size);
params
.cipher
.crypt_in_place(&mut encrypted_private_keys, key, iv);
}
}
Ok(EncryptedPrivateKeys {
public_keys,
cipher: params.cipher,
kdf: params.kdf,
encrypted_private_keys,
})
}
}
impl PrivateKey {
pub fn public_key(&self) -> PublicKey {
match *self {
Self::Ed25519 { public_key, .. } => PublicKey::Ed25519 { public_key },
Self::EcdsaSha2NistP256 { public_key, .. } => {
PublicKey::EcdsaSha2NistP256 { public_key }
}
}
}
pub fn algorithm_name(&self) -> &'static str {
self.public_key().algorithm_name()
}
}
#[cfg(test)]
mod tests {
use crate::{Cipher, EncryptedPrivateKeys, Kdf, KeyEncryptionParams, PrivateKey};
// ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIHPaiIO6MePXM/QCJWVge1k4dsiefPr4taP9VJbCtXdx uwu
// Password: 'test'
const TEST_ED25519_AES256_CTR: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABA5S8LoGs
SYFE1uIAlgK4I/AAAAGAAAAAEAAAAzAAAAC3NzaC1lZDI1NTE5AAAAIHPaiIO6MePXM/QC
JWVge1k4dsiefPr4taP9VJbCtXdxAAAAkB9StlI/JgwhtvDGx7v08RAa76W6aXSgbDJTU/
KNPzv0yXhCRleYltud2W2R3G6lElGKBgLfC6U944U8ZFHQQevQIHeSGPkbLGklTXrrrLl7
ZdWF8er/J/gA0H1T0QE/NYiHxY4NdBzYc4GKCBItOmIT8K/4bsMmh7VXtO0WmkmhoumnLX
rsOKyxcDiMs2J8cg==
-----END OPENSSH PRIVATE KEY-----
";
// ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIP60Q8iOyatiPeJbpQ8JVoZazukcSwhnKrg+wzw7/JZQ uwu
// no password
const TEST_ED25519_NONE: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
QyNTUxOQAAACD+tEPIjsmrYj3iW6UPCVaGWs7pHEsIZyq4PsM8O/yWUAAAAIj6bZmH+m2Z
hwAAAAtzc2gtZWQyNTUxOQAAACD+tEPIjsmrYj3iW6UPCVaGWs7pHEsIZyq4PsM8O/yWUA
AAAEAdSh0yeEtOyIa0mzMH36U77BNkiuQkERT8TVTrOOgPyP60Q8iOyatiPeJbpQ8JVoZa
zukcSwhnKrg+wzw7/JZQAAAAA3V3dQEC
-----END OPENSSH PRIVATE KEY-----
";
// ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHZTdlJoLNb701EWnahywBv032Aby+Piza7TzKW1H6Z//Hni/rBcUgnMmG+Kc4XWp6zgny3FMFpviuL01eJbpY8= uwu
// no password
const TEST_ECDSA_SHA2_NISTP256_NONE: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAaAAAABNlY2RzYS
1zaGEyLW5pc3RwMjU2AAAACG5pc3RwMjU2AAAAQQR2U3ZSaCzW+9NRFp2ocsAb9N9gG8vj
4s2u08yltR+mf/x54v6wXFIJzJhvinOF1qes4J8txTBab4ri9NXiW6WPAAAAoKQV4mmkFe
JpAAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHZTdlJoLNb701EW
nahywBv032Aby+Piza7TzKW1H6Z//Hni/rBcUgnMmG+Kc4XWp6zgny3FMFpviuL01eJbpY
8AAAAgVF0Z9J3CtkKpNt2IGTJZtBLK+QQKu/bUkp12gstIonUAAAADdXd1AQIDBAU=
-----END OPENSSH PRIVATE KEY-----";
#[test]
fn ed25519_none() {
let keys = EncryptedPrivateKeys::parse(TEST_ED25519_NONE).unwrap();
assert_eq!(keys.public_keys.len(), 1);
assert_eq!(keys.cipher, Cipher::None);
assert_eq!(keys.kdf, Kdf::None);
let decrypted = keys.decrypt(None).unwrap();
assert_eq!(decrypted.len(), 1);
let key = decrypted.first().unwrap();
assert_eq!(key.comment, "uwu");
assert!(matches!(key.private_key, PrivateKey::Ed25519 { .. }));
}
#[test]
fn roundtrip_ed25519_none() {
let keys = EncryptedPrivateKeys::parse(TEST_ED25519_NONE).unwrap();
let decrypted = keys.decrypt(None).unwrap();
let encrypted = decrypted[0]
.encrypt(KeyEncryptionParams::secure_or_none("".to_owned()))
.unwrap();
let bytes = encrypted.to_bytes();
assert_eq!(pem::parse(TEST_ED25519_NONE).unwrap().contents(), bytes);
}
#[test]
fn ecdsa_sha2_nistp256_none() {
let keys = EncryptedPrivateKeys::parse(TEST_ECDSA_SHA2_NISTP256_NONE).unwrap();
assert_eq!(keys.public_keys.len(), 1);
assert_eq!(keys.cipher, Cipher::None);
assert_eq!(keys.kdf, Kdf::None);
let decrypted = keys.decrypt(None).unwrap();
assert_eq!(decrypted.len(), 1);
let key = decrypted.first().unwrap();
assert_eq!(key.comment, "uwu");
assert!(matches!(key.private_key, PrivateKey::EcdsaSha2NistP256 { .. }));
}
#[test]
fn roundtrip_ecdsa_sha2_nistp256_none() {
let keys = EncryptedPrivateKeys::parse(TEST_ECDSA_SHA2_NISTP256_NONE).unwrap();
let decrypted = keys.decrypt(None).unwrap();
let encrypted = decrypted[0]
.encrypt(KeyEncryptionParams::secure_or_none("".to_owned()))
.unwrap();
let bytes = encrypted.to_bytes();
std::fs::write(
"expected",
pem::parse(TEST_ECDSA_SHA2_NISTP256_NONE)
.unwrap()
.contents(),
)
.unwrap();
std::fs::write("found", &bytes).unwrap();
assert_eq!(
pem::parse(TEST_ECDSA_SHA2_NISTP256_NONE)
.unwrap()
.contents(),
bytes
);
}
#[test]
fn ed25519_aes256ctr() {
let keys = EncryptedPrivateKeys::parse(TEST_ED25519_AES256_CTR).unwrap();
assert_eq!(keys.public_keys.len(), 1);
assert_eq!(keys.cipher, Cipher::Aes256Ctr);
assert!(matches!(keys.kdf, Kdf::BCrypt { .. }));
let decrypted = keys.decrypt(Some("test")).unwrap();
assert_eq!(decrypted.len(), 1);
let key = decrypted.first().unwrap();
assert_eq!(key.comment, "uwu");
assert!(matches!(key.private_key, PrivateKey::Ed25519 { .. }));
}
#[test]
fn roundtrip_ed25519_aes256ctr() {
let keys = EncryptedPrivateKeys::parse(TEST_ED25519_NONE).unwrap();
let decrypted = keys.decrypt(None).unwrap();
let encrypted = decrypted[0]
.encrypt(KeyEncryptionParams::secure_or_none("".to_owned()))
.unwrap();
let bytes = encrypted.to_bytes();
assert_eq!(pem::parse(TEST_ED25519_NONE).unwrap().contents(), bytes);
}
}
pub use crate::crypto::{KeyGenerationParams, KeyType};

View file

@ -0,0 +1,525 @@
use std::fmt::Debug;
use crate::crypto::{self, Cipher, Kdf};
use cluelessh_format::{Reader, Writer};
use crate::public::PublicKey;
use crate::KeyGenerationParams;
pub struct EncryptedPrivateKeys {
pub public_keys: Vec<PublicKey>,
pub cipher: Cipher,
pub kdf: Kdf,
pub encrypted_private_keys: Vec<u8>,
}
#[derive(Clone)]
pub struct PlaintextPrivateKey {
pub private_key: PrivateKey,
pub comment: String,
checkint: u32,
}
impl Debug for PlaintextPrivateKey {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("PlaintextPrivateKey")
.field(
"public_key",
&format_args!("{}", self.private_key.public_key()),
)
.field("comment", &self.comment)
.finish()
}
}
#[derive(Clone)]
pub enum PrivateKey {
Ed25519 {
public_key: ed25519_dalek::VerifyingKey,
private_key: [u8; 32], // TODO: store a signing key!
},
EcdsaSha2NistP256 {
public_key: p256::ecdsa::VerifyingKey,
private_key: p256::ecdsa::SigningKey,
},
}
const MAGIC: &[u8; 15] = b"openssh-key-v1\0";
impl EncryptedPrivateKeys {
/// Parse OpenSSH private keys, either armored or not.
pub fn parse(content: &[u8]) -> cluelessh_format::Result<Self> {
// https://github.com/openssh/openssh-portable/blob/a76a6b85108e3032c8175611ecc5746e7131f876/PROTOCOL.key
let pem: pem::Pem; // lifetime extension
let content = if content.starts_with(b"openssh-key-v1") {
content
} else if content.starts_with(b"-----BEGIN OPENSSH PRIVATE KEY-----") {
pem = pem::parse(content).map_err(|err| {
cluelessh_format::ParseError(format!("invalid PEM format: {err}"))
})?;
pem.contents()
} else {
return Err(cluelessh_format::ParseError("invalid SSH key".to_owned()));
};
let mut p = Reader::new(content);
let magic = p.array::<{ MAGIC.len() }>()?;
if magic != *MAGIC {
return Err(cluelessh_format::ParseError(
"invalid magic, not an SSH key?".to_owned(),
));
}
let ciphername = p.utf8_string()?;
let cipher = ciphername.parse::<Cipher>()?;
let kdfname = p.utf8_string()?;
let kdfoptions = p.string()?;
let kdf = Kdf::from_str_and_options(kdfname, kdfoptions)?;
let keynum = p.u32()?;
let mut public_keys = Vec::new();
for _ in 0..keynum {
let pubkey = p.string()?;
let pubkey = PublicKey::from_wire_encoding(pubkey)?;
public_keys.push(pubkey);
}
let priv_keys = p.string()?;
Ok(EncryptedPrivateKeys {
public_keys,
cipher,
kdf,
encrypted_private_keys: priv_keys.to_owned(),
})
}
pub fn to_bytes_armored(&self) -> String {
let content = self.to_bytes();
let pem = pem::Pem::new("OPENSSH PRIVATE KEY", content);
pem::encode(&pem)
}
pub fn to_bytes(&self) -> Vec<u8> {
let mut p = Writer::new();
p.array(*MAGIC);
p.string(self.cipher.name().as_bytes());
p.string(self.kdf.name().as_bytes());
dbg!(self.kdf.options());
p.string(self.kdf.options());
p.u32(self.public_keys.len() as u32);
for pubkey in &self.public_keys {
p.string(pubkey.to_wire_encoding());
}
p.string(&self.encrypted_private_keys);
p.finish()
}
pub fn requires_passphrase(&self) -> bool {
(!matches!(self.kdf, Kdf::None)) && (!matches!(self.cipher, Cipher::None))
}
pub fn decrypt_encrypted_part(
&self,
passphrase: Option<&str>,
) -> cluelessh_format::Result<Vec<u8>> {
let mut data = self.encrypted_private_keys.clone();
if self.requires_passphrase() {
let Some(passphrase) = passphrase else {
panic!("missing passphrase for encrypted key");
};
if passphrase.is_empty() {
return Err(cluelessh_format::ParseError(format!("empty passphrase")));
}
let (key_size, iv_size) = self.cipher.key_iv_size();
let mut output = vec![0; key_size + iv_size];
self.kdf.derive(passphrase, &mut output)?;
let (key, iv) = output.split_at(key_size);
self.cipher.crypt_in_place(&mut data, key, iv);
}
Ok(data)
}
pub fn decrypt(
&self,
passphrase: Option<&str>,
) -> cluelessh_format::Result<Vec<PlaintextPrivateKey>> {
let data = self.decrypt_encrypted_part(passphrase)?;
let mut p = Reader::new(&data);
let checkint1 = p.u32()?;
let checkint2 = p.u32()?;
if checkint1 != checkint2 {
return Err(cluelessh_format::ParseError(format!(
"invalid key or password"
)));
}
let mut result_keys = Vec::new();
for pubkey in &self.public_keys {
let keytype = match *pubkey {
PublicKey::Ed25519 { public_key } => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-eddsa-keys>
let alg = p.utf8_string()?;
if alg != pubkey.algorithm_name() {
return Err(cluelessh_format::ParseError(format!(
"algorithm mismatch. pubkey: {}, privkey: {alg}",
pubkey.algorithm_name()
)));
}
let enc_a = p.string()?; // ENC(A)
if enc_a != public_key.as_bytes() {
return Err(cluelessh_format::ParseError(format!("public key mismatch")));
}
let k_enc_a = p.string()?; // k || ENC(A)
if k_enc_a.len() != 64 {
return Err(cluelessh_format::ParseError(format!(
"invalid len for ed25519 keypair: {}, expected 64",
k_enc_a.len()
)));
}
let (k, enc_a) = k_enc_a.split_at(32);
if enc_a != public_key.as_bytes() {
// Yes, ed25519 SSH keys seriously store the public key THREE TIMES.
return Err(cluelessh_format::ParseError(format!("public key mismatch")));
}
let private_key = k.try_into().unwrap();
PrivateKey::Ed25519 {
public_key,
private_key,
}
}
PublicKey::EcdsaSha2NistP256 { public_key } => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-ecdsa-keys>
let alg = p.utf8_string()?;
if alg != pubkey.algorithm_name() {
return Err(cluelessh_format::ParseError(format!(
"algorithm mismatch. pubkey: {}, privkey: {alg}",
pubkey.algorithm_name()
)));
}
let curve_name = p.utf8_string()?;
if curve_name != "nistp256" {
return Err(cluelessh_format::ParseError(format!(
"curve name mismatch. expected: nistp256, found: {curve_name}",
)));
}
let q = p.string()?;
if q != public_key.to_encoded_point(false).as_bytes() {
return Err(cluelessh_format::ParseError(format!("public key mismatch")));
}
let d = p.mpint()?;
let private_key = p256::ecdsa::SigningKey::from_slice(d).map_err(|_| {
cluelessh_format::ParseError(format!("invalid private key bytes"))
})?;
PrivateKey::EcdsaSha2NistP256 {
public_key,
private_key,
}
}
};
let comment = p.utf8_string()?;
result_keys.push(PlaintextPrivateKey {
private_key: keytype,
comment: comment.to_owned(),
checkint: checkint1,
});
}
// verify padding
for i in 1_u8..=255 {
if p.has_data() {
let b = p.u8()?;
if b != i {
return Err(cluelessh_format::ParseError(format!(
"private key padding is incorrect: {b} != {i}"
)));
}
}
}
Ok(result_keys)
}
}
pub struct KeyEncryptionParams {
pub cipher: Cipher,
pub kdf: Kdf,
pub passphrase: Option<String>,
}
impl KeyEncryptionParams {
pub fn plaintext() -> Self {
Self {
cipher: Cipher::None,
kdf: Kdf::None,
passphrase: None,
}
}
pub fn secure_encrypted(passphrase: String) -> Self {
assert!(!passphrase.is_empty());
Self {
cipher: Cipher::Aes256Ctr,
kdf: Kdf::BCrypt {
salt: rand::random(),
rounds: 24,
},
passphrase: Some(passphrase),
}
}
pub fn same_as_existing(key: &EncryptedPrivateKeys, passphrase: Option<String>) -> Self {
if passphrase.is_none() {
assert_eq!(key.cipher, Cipher::None);
assert_eq!(key.kdf, Kdf::None);
}
Self {
cipher: key.cipher.clone(),
kdf: key.kdf.clone(),
passphrase,
}
}
}
impl PlaintextPrivateKey {
pub fn generate(comment: String, params: KeyGenerationParams) -> Self {
let keytype = crypto::generate_private_key(params);
Self {
comment,
private_key: keytype,
checkint: rand::random(),
}
}
pub fn encrypt(
&self,
params: KeyEncryptionParams,
) -> cluelessh_format::Result<EncryptedPrivateKeys> {
let public_keys = vec![self.private_key.public_key()];
let mut enc = Writer::new();
enc.u32(self.checkint);
enc.u32(self.checkint);
match &self.private_key {
PrivateKey::Ed25519 {
public_key,
private_key,
} => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-eddsa-keys>
enc.string(b"ssh-ed25519");
enc.string(public_key);
let combined = private_key.len() + public_key.as_bytes().len();
enc.u32(combined as u32);
enc.raw(private_key);
enc.raw(public_key.as_bytes());
}
PrivateKey::EcdsaSha2NistP256 {
public_key,
private_key,
} => {
// <https://datatracker.ietf.org/doc/html/draft-miller-ssh-agent#name-ecdsa-keys>
enc.string(self.private_key.algorithm_name());
enc.string("nistp256");
enc.string(public_key.to_encoded_point(false));
enc.mpint(p256::U256::from(private_key.as_nonzero_scalar().as_ref()));
}
}
enc.string(self.comment.as_bytes());
let current_len = enc.current_length();
let block_size = params.cipher.block_size();
let pad_len = current_len.next_multiple_of(block_size) - current_len;
for i in 1..=(pad_len as u8) {
enc.u8(i);
}
let mut encrypted_private_keys = enc.finish();
match params.cipher {
Cipher::None => {}
Cipher::Aes256Ctr => {
let (key_size, iv_size) = params.cipher.key_iv_size();
let mut output = vec![0; key_size + iv_size];
params
.kdf
.derive(&params.passphrase.unwrap(), &mut output)?;
let (key, iv) = output.split_at(key_size);
params
.cipher
.crypt_in_place(&mut encrypted_private_keys, key, iv);
}
}
Ok(EncryptedPrivateKeys {
public_keys,
cipher: params.cipher,
kdf: params.kdf,
encrypted_private_keys,
})
}
}
impl PrivateKey {
pub fn public_key(&self) -> PublicKey {
match *self {
Self::Ed25519 { public_key, .. } => PublicKey::Ed25519 { public_key },
Self::EcdsaSha2NistP256 { public_key, .. } => {
PublicKey::EcdsaSha2NistP256 { public_key }
}
}
}
pub fn algorithm_name(&self) -> &'static str {
self.public_key().algorithm_name()
}
}
#[cfg(test)]
mod tests {
use crate::private::{EncryptedPrivateKeys, KeyEncryptionParams, PrivateKey};
// ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIP60Q8iOyatiPeJbpQ8JVoZazukcSwhnKrg+wzw7/JZQ uwu
// no password
const TEST_ED25519_NONE: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
QyNTUxOQAAACD+tEPIjsmrYj3iW6UPCVaGWs7pHEsIZyq4PsM8O/yWUAAAAIj6bZmH+m2Z
hwAAAAtzc2gtZWQyNTUxOQAAACD+tEPIjsmrYj3iW6UPCVaGWs7pHEsIZyq4PsM8O/yWUA
AAAEAdSh0yeEtOyIa0mzMH36U77BNkiuQkERT8TVTrOOgPyP60Q8iOyatiPeJbpQ8JVoZa
zukcSwhnKrg+wzw7/JZQAAAAA3V3dQEC
-----END OPENSSH PRIVATE KEY-----
";
// ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIHPaiIO6MePXM/QCJWVge1k4dsiefPr4taP9VJbCtXdx uwu
// Password: 'test'
const TEST_ED25519_AES256_CTR: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABA5S8LoGs
SYFE1uIAlgK4I/AAAAGAAAAAEAAAAzAAAAC3NzaC1lZDI1NTE5AAAAIHPaiIO6MePXM/QC
JWVge1k4dsiefPr4taP9VJbCtXdxAAAAkB9StlI/JgwhtvDGx7v08RAa76W6aXSgbDJTU/
KNPzv0yXhCRleYltud2W2R3G6lElGKBgLfC6U944U8ZFHQQevQIHeSGPkbLGklTXrrrLl7
ZdWF8er/J/gA0H1T0QE/NYiHxY4NdBzYc4GKCBItOmIT8K/4bsMmh7VXtO0WmkmhoumnLX
rsOKyxcDiMs2J8cg==
-----END OPENSSH PRIVATE KEY-----
";
// ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHZTdlJoLNb701EWnahywBv032Aby+Piza7TzKW1H6Z//Hni/rBcUgnMmG+Kc4XWp6zgny3FMFpviuL01eJbpY8= uwu
// no password
const TEST_ECDSA_SHA2_NISTP256_NONE: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAaAAAABNlY2RzYS
1zaGEyLW5pc3RwMjU2AAAACG5pc3RwMjU2AAAAQQR2U3ZSaCzW+9NRFp2ocsAb9N9gG8vj
4s2u08yltR+mf/x54v6wXFIJzJhvinOF1qes4J8txTBab4ri9NXiW6WPAAAAoKQV4mmkFe
JpAAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHZTdlJoLNb701EW
nahywBv032Aby+Piza7TzKW1H6Z//Hni/rBcUgnMmG+Kc4XWp6zgny3FMFpviuL01eJbpY
8AAAAgVF0Z9J3CtkKpNt2IGTJZtBLK+QQKu/bUkp12gstIonUAAAADdXd1AQIDBAU=
-----END OPENSSH PRIVATE KEY-----";
// ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBEusldR/7TICHafRbJX+30e5st+UbgUP1rBIh/AcnBn9dScaOXWgm8vmUYmth5GpZtLo39kBBKZV8QJe7FXmC8c= uwu
// password: 'test'
const TEST_ECDSA_SHA2_NISTP256_AES256_CTR: &[u8] = b"-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAACmFlczI1Ni1jdHIAAAAGYmNyeXB0AAAAGAAAABCWX6qaxj
miQgsaPGi1IyvYAAAAGAAAAAEAAABoAAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlz
dHAyNTYAAABBBEusldR/7TICHafRbJX+30e5st+UbgUP1rBIh/AcnBn9dScaOXWgm8vmUY
mth5GpZtLo39kBBKZV8QJe7FXmC8cAAACgRu/TvP/8rpKdP8krcK4fcCusqyxKsnGa8Auv
Pq9bO01HN5LcaXvDUteDZ9JBMuhVZJkW+8x1y3oNo4dLxcQk2Lor0v9xTB+8Ak0GPZUKPq
f8eMUtjTcN9zoUi67Ho+RIxqN8mYxLy7YDlM54vJ45VhNtcBdoIrQFdrT3QngvZ26Hk6M1
NZ1XxE87G/z54ftU4Nhj9SCIDPNXB5/1xu/6mA==
-----END OPENSSH PRIVATE KEY-----";
#[track_caller]
fn roundtrip(keys: &[&[u8]], passphrase: Option<&str>) {
for key_bytes in keys {
let key_bytes = pem::parse(key_bytes).unwrap();
let key_bytes = key_bytes.contents();
let keys = EncryptedPrivateKeys::parse(&key_bytes).unwrap();
let decrypted = keys.decrypt(passphrase).unwrap();
let encrypted = decrypted[0]
.encrypt(KeyEncryptionParams::same_as_existing(
&keys,
passphrase.map(ToOwned::to_owned),
))
.unwrap();
let bytes = encrypted.to_bytes();
if key_bytes != bytes {
let _ = std::fs::write("_expected", key_bytes);
let _ = std::fs::write("_found", &bytes);
}
assert_eq!(key_bytes, bytes);
}
}
#[track_caller]
fn parse_private_key(key: &[u8], password: Option<&str>) -> PrivateKey {
let keys = EncryptedPrivateKeys::parse(key).unwrap();
assert_eq!(keys.public_keys.len(), 1);
let mut decrypted = keys.decrypt(password).unwrap();
assert_eq!(decrypted.len(), 1);
let key = decrypted.remove(0);
key.private_key
}
#[test]
fn ed25519_none() {
assert!(matches!(
parse_private_key(TEST_ED25519_NONE, None),
PrivateKey::Ed25519 { .. }
));
}
#[test]
fn ecdsa_sha2_nistp256_none() {
assert!(matches!(
parse_private_key(TEST_ECDSA_SHA2_NISTP256_NONE, None),
PrivateKey::EcdsaSha2NistP256 { .. }
));
}
#[test]
fn ed25519_aes256ctr() {
assert!(matches!(
parse_private_key(TEST_ED25519_AES256_CTR, Some("test")),
PrivateKey::Ed25519 { .. }
));
}
#[test]
fn roundtrip_ed25519_none() {
roundtrip(&[TEST_ED25519_NONE], None);
}
#[test]
fn roundtrip_ed25519_aes256_ctr() {
roundtrip(&[TEST_ED25519_AES256_CTR], Some("test"));
}
#[test]
fn roundtrip_ecdsa_sha2_nistp256_none() {
roundtrip(&[TEST_ECDSA_SHA2_NISTP256_NONE], None);
}
#[test]
fn roundtrip_ecdsa_sha2_nistp256_aes256_ctr() {
roundtrip(&[TEST_ECDSA_SHA2_NISTP256_AES256_CTR], Some("test"));
}
}

View file

@ -19,6 +19,12 @@ pub enum PublicKey {
},
}
#[derive(Debug, Clone, PartialEq)]
pub struct PublicKeyWithComment {
pub key: PublicKey,
pub comment: String,
}
impl PublicKey {
/// Parses an SSH public key from its wire encoding as specified in
/// RFC4253, RFC5656, and RFC8709.

View file

@ -1,7 +1,10 @@
pub mod encrypt;
use cluelessh_format::{Reader, Writer};
use cluelessh_keys::{public::PublicKey, PlaintextPrivateKey, PrivateKey};
use cluelessh_keys::{
private::{PlaintextPrivateKey, PrivateKey},
public::PublicKey,
};
use p256::ecdsa::signature::Signer;
use sha2::Digest;

View file

@ -27,7 +27,7 @@ pub struct ServerConnection {
#[derive(Debug, Clone, Default)]
pub struct ServerConfig {
pub host_keys: Vec<cluelessh_keys::PlaintextPrivateKey>,
pub host_keys: Vec<cluelessh_keys::private::PlaintextPrivateKey>,
}
enum ServerState {
@ -355,12 +355,15 @@ impl ServerConnection {
}
}
#[cfg(test)]
mod tests {
use hex_literal::hex;
use crate::{packet::MsgKind, server::{ServerConfig, ServerConnection}, SshRng};
use crate::{
packet::MsgKind,
server::{ServerConfig, ServerConnection},
SshRng,
};
struct NoRng;
impl SshRng for NoRng {