add spans to AST

This commit is contained in:
nora 2021-10-31 00:40:18 +02:00
parent d848818824
commit 8f99a1d630
4 changed files with 155 additions and 61 deletions

View file

@ -1,8 +1,9 @@
//!
//! The AST module contains all structs and enums for the abstract syntax tree generated by the parser
#![allow(dead_code)]
use crate::errors::Span;
/// imagine interning or something here
pub type Symbol = String;
@ -20,25 +21,28 @@ pub enum Stmt {
If(IfStmt),
Loop(Block),
While(WhileStmt),
Break,
Break(Break),
Return(Option<Expr>),
Expr(Expr),
}
#[derive(Debug, Clone, PartialEq)]
pub struct Declaration {
pub span: Span,
name: Symbol,
init: Expr,
}
#[derive(Debug, Clone, PartialEq)]
pub struct Assignment {
pub span: Span,
pub lhs: Symbol,
pub rhs: Expr,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FnDecl {
pub span: Span,
pub name: Symbol,
pub params: Vec<Symbol>,
pub body: Block,
@ -46,6 +50,7 @@ pub struct FnDecl {
#[derive(Debug, Clone, PartialEq)]
pub struct IfStmt {
pub span: Span,
pub condition: Expr,
pub body: Block,
pub else_part: Box<ElsePart>,
@ -59,29 +64,59 @@ pub enum ElsePart {
#[derive(Debug, Clone, PartialEq)]
pub struct WhileStmt {
pub span: Span,
pub cond: Expr,
pub body: Block,
}
#[derive(Debug, Clone, PartialEq)]
pub struct Break {
pub span: Span,
}
#[derive(Debug, Clone, PartialEq)]
pub enum Expr {
Literal(Literal),
UnaryOp,
BinaryOp,
UnaryOp(Box<UnaryOp>),
BinaryOp(Box<BinaryOp>),
}
impl Expr {
pub fn span(&self) -> Span {
match self {
Expr::Literal(lit) => lit.span(),
Expr::UnaryOp(unary) => unary.span,
Expr::BinaryOp(binary) => binary.span,
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub enum Literal {
String(String),
Number(f64),
Array(Vec<Expr>),
Object,
Boolean(bool),
Null,
String(String, Span),
Number(f64, Span),
Array(Vec<Expr>, Span),
Object(Span),
Boolean(bool, Span),
Null(Span),
}
impl Literal {
pub fn span(&self) -> Span {
match self {
Literal::String(_, span) => *span,
Literal::Number(_, span) => *span,
Literal::Array(_, span) => *span,
Literal::Object(span) => *span,
Literal::Boolean(_, span) => *span,
Literal::Null(span) => *span,
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct UnaryOp {
pub span: Span,
pub expr: Expr,
pub kind: UnaryOpKind,
}
@ -94,6 +129,7 @@ pub enum UnaryOpKind {
#[derive(Debug, Clone, PartialEq)]
pub struct BinaryOp {
pub span: Span,
pub lhs: Expr,
pub rhs: Expr,
pub kind: BinaryOpKind,
@ -115,9 +151,3 @@ pub enum BinaryOpKind {
Div,
Mod,
}
#[derive(Debug, Clone, PartialEq)]
pub enum Call {
Function(Expr, Vec<Expr>),
Field(Expr, Vec<Expr>),
}

View file

@ -3,27 +3,53 @@
use std::fmt::Debug;
#[derive(Debug, Copy, Clone, PartialOrd, PartialEq, Ord, Eq, Hash)]
pub struct Span {
start: usize,
len: usize,
}
pub use span::Span;
impl Span {
pub fn new(start: usize, len: usize) -> Self {
Self { start, len }
mod span {
#[derive(Debug, Copy, Clone, PartialOrd, PartialEq, Ord, Eq, Hash)]
pub struct Span {
pub start: usize,
pub end: usize,
}
pub fn start_end(start: usize, end: usize) -> Self {
Self::new(start, end - start)
}
impl Span {
pub fn new(start: usize, len: usize) -> Self {
Self {
start,
end: start + len,
}
}
pub fn single(start: usize) -> Self {
Self { start, len: 1 }
}
pub fn start_end(start: usize, end: usize) -> Self {
Self::new(start, end)
}
pub fn dummy() -> Self {
Self { start: 0, len: 0 }
pub fn single(start: usize) -> Self {
Self {
start,
end: start + 1,
}
}
pub fn dummy() -> Self {
Self { start: 0, end: 0 }
}
/// Extends the span by the second one
/// The other one has to be after the current one
pub fn extend(&self, other: Span) -> Span {
debug_assert!(self.start <= other.start);
debug_assert!(self.end <= other.end);
Span {
start: self.start,
end: other.end,
}
}
pub fn len(&self) -> usize {
self.end - self.start
}
}
}
@ -57,7 +83,7 @@ where
"{}{}{}{}",
" ".repeat(offset_on_line),
RED,
"^".repeat(error.span().len),
"^".repeat(error.span().len()),
RESET,
);
if let Some(note) = error.note() {

View file

@ -126,7 +126,7 @@ impl<'code> Lexer<'code> {
if self.expect(expect_char) {
let _ = self.code.next(); // consume first one
Token {
span: Span::new(start, 2),
span: Span::new(start, start + 2),
kind: true_type,
}
} else {
@ -191,7 +191,7 @@ impl<'code> Iterator for Lexer<'code> {
if self.expect('=') {
let _ = self.code.next(); // consume =;
break Token {
span: Span::new(start, 2),
span: Span::new(start, start + 2),
kind: TokenType::BangEqual,
};
} else {

View file

@ -96,23 +96,39 @@ impl<'code> Parser<'code> {
}
fn unary(&mut self) -> ParseResult<'code, Expr> {
match self.next().ok_or(ParseErr::EOF)?.kind {
TokenType::Not => todo!(),
TokenType::Minus => todo!(),
let next = self.next().ok_or(ParseErr::EOF)?;
match next.kind {
TokenType::Not => {
let expr = self.expression()?;
Ok(Expr::UnaryOp(Box::new(UnaryOp {
span: next.span,
expr,
kind: UnaryOpKind::Not,
})))
}
TokenType::Minus => {
let expr = self.expression()?;
Ok(Expr::UnaryOp(Box::new(UnaryOp {
span: next.span,
expr,
kind: UnaryOpKind::Neg,
})))
}
_ => todo!(),
}
}
fn primary(&mut self) -> ParseResult<'code, Expr> {
match self.next().ok_or(ParseErr::EOF)?.kind {
TokenType::String(literal) => Ok(Expr::Literal(Literal::String(literal))),
TokenType::Number(literal) => Ok(Expr::Literal(Literal::Number(literal))),
TokenType::False => Ok(Expr::Literal(Literal::Boolean(false))),
TokenType::True => Ok(Expr::Literal(Literal::Boolean(true))),
TokenType::Null => Ok(Expr::Literal(Literal::Null)),
let next = self.next().ok_or(ParseErr::EOF)?;
match next.kind {
TokenType::String(literal) => Ok(Expr::Literal(Literal::String(literal, next.span))),
TokenType::Number(literal) => Ok(Expr::Literal(Literal::Number(literal, next.span))),
TokenType::False => Ok(Expr::Literal(Literal::Boolean(false, next.span))),
TokenType::True => Ok(Expr::Literal(Literal::Boolean(true, next.span))),
TokenType::Null => Ok(Expr::Literal(Literal::Null(next.span))),
TokenType::BraceO => {
self.expect(TokenType::BraceC)?;
Ok(Expr::Literal(Literal::Object))
Ok(Expr::Literal(Literal::Object(next.span)))
}
TokenType::BracketO => {
let mut elements = Vec::new();
@ -121,8 +137,11 @@ impl<'code> Parser<'code> {
elements.push(expr);
self.expect(TokenType::Comma)?;
}
self.expect(TokenType::BracketC);
Ok(Expr::Literal(Literal::Array(elements)))
let closing_bracket = self.expect(TokenType::BracketC)?;
Ok(Expr::Literal(Literal::Array(
elements,
next.span.extend(closing_bracket.span),
)))
}
TokenType::ParenO => todo!(),
_ => todo!(),
@ -130,9 +149,9 @@ impl<'code> Parser<'code> {
}
fn object_literal(&mut self) -> ParseResult<'code, Expr> {
self.expect(TokenType::BraceO)?;
self.expect(TokenType::BraceC)?;
Ok(Expr::Literal(Literal::Object))
let open_span = self.expect(TokenType::BraceO)?.span;
let close_span = self.expect(TokenType::BraceC)?.span;
Ok(Expr::Literal(Literal::Object(open_span.extend(close_span))))
}
fn array_literal(&mut self) -> ParseResult<'code, Expr> {
@ -149,10 +168,10 @@ impl<'code> Parser<'code> {
self.tokens.peek()
}
fn expect(&mut self, kind: TokenType<'code>) -> ParseResult<'code, ()> {
fn expect(&mut self, kind: TokenType<'code>) -> ParseResult<'code, Token> {
if let Some(token) = self.next() {
if token.kind == kind {
Ok(())
Ok(token)
} else {
Err(ParseErr::MismatchedKind { expected: kind })
}
@ -200,10 +219,17 @@ mod test {
}
}
mod primary {
mod unary {
use super::{parser, token};
use crate::ast::{Expr, Literal};
use crate::lex::{Token, TokenType};
use crate::parse::test::{parser, token};
}
mod primary {
use super::{parser, token};
use crate::ast::{Expr, Literal};
use crate::errors::Span;
use crate::lex::{Token, TokenType};
fn parse_primary<'a, T: Into<Vec<Token<'a>>>>(tokens: T) -> Expr {
let mut parser = parser(tokens);
@ -214,49 +240,61 @@ mod test {
fn string() {
let tokens = [TokenType::Number(10.0)].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Number(10.0)), literal);
assert_eq!(Expr::Literal(Literal::Number(10.0, Span::dummy())), literal);
}
#[test]
fn number() {
let tokens = [TokenType::String("uwu".to_string())].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::String("uwu".to_string())), literal);
assert_eq!(
Expr::Literal(Literal::String("uwu".to_string(), Span::dummy())),
literal
);
}
#[test]
fn empty_object() {
let tokens = [TokenType::BraceO, TokenType::BraceC].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Object), literal);
assert_eq!(Expr::Literal(Literal::Object(Span::dummy())), literal);
}
#[test]
fn empty_array() {
let tokens = [TokenType::BracketO, TokenType::BracketC].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Array(Vec::new())), literal);
assert_eq!(
Expr::Literal(Literal::Array(Vec::new(), Span::dummy())),
literal
);
}
#[test]
fn r#false() {
let tokens = [TokenType::False].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Boolean(false)), literal);
assert_eq!(
Expr::Literal(Literal::Boolean(false, Span::dummy())),
literal
);
}
#[test]
fn r#true() {
let tokens = [TokenType::True].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Boolean(true)), literal);
assert_eq!(
Expr::Literal(Literal::Boolean(true, Span::dummy())),
literal
);
}
#[test]
fn null() {
let tokens = [TokenType::Null].map(token);
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Null), literal);
assert_eq!(Expr::Literal(Literal::Null(Span::dummy())), literal);
}
}
}