dilaria/src/parse/test.rs
2021-11-02 21:09:07 +01:00

824 lines
21 KiB
Rust

use crate::ast::BinaryOp;
use crate::parse::Parser;
use prelude::*;
mod prelude {
pub(super) use super::{
empty_block, num_lit, parser, test_literal_bin_op, test_number_literal, token,
};
pub(super) use crate::ast::*;
pub(super) use crate::errors::Span;
pub(super) use crate::lex::{
Token,
TokenType::{self, *},
};
}
fn token(kind: TokenType) -> Token {
Token {
span: Span::dummy(),
kind,
}
}
fn num_lit(number: f64) -> Expr {
Expr::Literal(Literal::Number(number, Span::dummy()))
}
fn empty_block() -> Block {
Block {
stmts: vec![],
span: Span::dummy(),
}
}
fn parser(tokens: Vec<Token>) -> Parser {
Parser {
tokens: tokens.into_iter().peekable(),
inside_fn_depth: 0,
inside_loop_depth: 0,
}
}
fn test_literal_bin_op<F: FnOnce(Vec<Token<'_>>) -> Expr>(
token_type: TokenType,
expected_op_kind: BinaryOpKind,
parser: F,
) {
let tokens = [TokenType::Number(10.0), token_type, TokenType::Number(4.0)]
.map(token)
.into();
let factor = parser(tokens);
assert_eq!(
Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: num_lit(10.0),
rhs: num_lit(4.0),
kind: expected_op_kind
})),
factor
);
}
fn test_number_literal<F: FnOnce(Vec<Token<'_>>) -> Expr>(parser: F) {
let tokens = [TokenType::Number(10.0)].map(token).into();
let unary = parser(tokens);
assert_eq!(num_lit(10.0), unary);
}
mod r#fn {
use super::prelude::*;
fn parse_fn(tokens: Vec<Token>) -> Stmt {
let mut parser = parser(tokens);
parser.fn_decl().unwrap()
}
#[test]
fn empty() {
let tokens = [Fn, Ident("empty"), ParenO, ParenC, BraceO, BraceC]
.map(token)
.into();
let ast = parse_fn(tokens);
assert_eq!(
Stmt::FnDecl(FnDecl {
span: Span::dummy(),
name: Ident {
name: "empty".to_string(),
span: Default::default()
},
params: vec![],
body: Block {
stmts: vec![],
span: Default::default()
}
}),
ast
);
}
#[test]
fn params_body() {
let tokens = [
Fn,
Ident("empty"),
ParenO,
Ident("a"),
Comma,
Ident("b"),
ParenC,
BraceO,
Number(10.0),
Plus,
Number(20.0),
Semi,
BraceC,
]
.map(token)
.into();
let ast = parse_fn(tokens);
assert_eq!(
Stmt::FnDecl(FnDecl {
span: Span::dummy(),
name: Ident {
name: "empty".to_string(),
span: Default::default()
},
params: vec![
Ident {
name: "a".to_string(),
span: Default::default()
},
Ident {
name: "b".to_string(),
span: Default::default()
}
],
body: Block {
stmts: vec![Stmt::Expr(Expr::BinaryOp(Box::new(BinaryOp {
span: Default::default(),
lhs: num_lit(10.0),
rhs: num_lit(20.0),
kind: BinaryOpKind::Add,
})))],
span: Default::default()
}
}),
ast
);
}
}
mod r#if {
use super::prelude::*;
fn parse_if(tokens: Vec<Token>) -> IfStmt {
let mut parser = parser(tokens);
parser.if_stmt().unwrap()
}
#[test]
fn empty() {
let tokens = [If, True, BraceO, BraceC].map(token).into();
let ast = parse_if(tokens);
assert_eq!(
IfStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block(),
else_part: None
},
ast
);
}
#[test]
fn if_else() {
let tokens = [If, True, BraceO, BraceC, Else, BraceO, BraceC]
.map(token)
.into();
let ast = parse_if(tokens);
assert_eq!(
IfStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block(),
else_part: Some(Box::new(ElsePart::Else(empty_block(), Span::dummy())))
},
ast
);
}
#[test]
fn if_else_if() {
let tokens = [If, True, BraceO, BraceC, Else, If, True, BraceO, BraceC]
.map(token)
.into();
let ast = parse_if(tokens);
assert_eq!(
IfStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block(),
else_part: Some(Box::new(ElsePart::ElseIf(
IfStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block(),
else_part: None
},
Span::dummy()
)))
},
ast
);
}
#[test]
fn if_else_if_else() {
let tokens = [
If, True, BraceO, BraceC, Else, If, True, BraceO, BraceC, Else, BraceO, BraceC,
]
.map(token)
.into();
let ast = parse_if(tokens);
assert_eq!(
IfStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block(),
else_part: Some(Box::new(ElsePart::ElseIf(
IfStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block(),
else_part: Some(Box::new(ElsePart::Else(empty_block(), Span::dummy())))
},
Span::dummy()
)))
},
ast
);
}
}
mod r#while {
use super::prelude::*;
fn parse_while(tokens: Vec<Token>) -> Stmt {
let mut parser = parser(tokens);
parser.while_stmt().unwrap()
}
#[test]
fn empty() {
let tokens = [While, True, BraceO, BraceC].map(token).into();
let ast = parse_while(tokens);
assert_eq!(
Stmt::While(WhileStmt {
span: Span::dummy(),
cond: Expr::Literal(Literal::Boolean(true, Span::dummy())),
body: empty_block()
}),
ast
);
}
#[test]
fn or_condition_break() {
let tokens = [While, False, Or, True, BraceO, Break, Semi, BraceC]
.map(token)
.into();
let ast = parse_while(tokens);
assert_eq!(
Stmt::While(WhileStmt {
span: Span::dummy(),
cond: Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: Expr::Literal(Literal::Boolean(false, Span::dummy())),
rhs: Expr::Literal(Literal::Boolean(true, Span::dummy())),
kind: BinaryOpKind::Or
})),
body: Block {
stmts: vec![Stmt::Break(Span::dummy())],
span: Span::dummy()
}
}),
ast
);
}
}
mod r#loop {
use super::prelude::*;
fn parse_loop(tokens: Vec<Token>) -> Stmt {
let mut parser = parser(tokens);
parser.loop_stmt().unwrap()
}
#[test]
fn empty() {
let tokens = [Loop, BraceO, BraceC].map(token).into();
let ast = parse_loop(tokens);
assert_eq!(Stmt::Loop(empty_block(), Span::dummy()), ast);
}
#[test]
fn with_break() {
let tokens = [Loop, BraceO, Break, Semi, BraceC].map(token).into();
let ast = parse_loop(tokens);
assert_eq!(
Stmt::Loop(
Block {
stmts: vec![Stmt::Break(Span::dummy())],
span: Default::default()
},
Span::dummy()
),
ast
);
}
#[test]
fn break_after_inner() {
let tokens = [Loop, BraceO, Loop, BraceO, BraceC, Break, Semi, BraceC]
.map(token)
.into();
let ast = parse_loop(tokens);
assert_eq!(
Stmt::Loop(
Block {
stmts: vec![
Stmt::Loop(empty_block(), Span::dummy()),
Stmt::Break(Span::dummy())
],
span: Span::dummy()
},
Span::dummy()
),
ast
);
}
}
mod block {
use super::prelude::*;
fn parse_block(tokens: Vec<Token>) -> Block {
let mut parser = parser(tokens);
parser.block().unwrap()
}
#[test]
fn empty() {
let tokens = [BraceO, BraceC].map(token).into();
let ast = parse_block(tokens);
assert_eq!(empty_block(), ast);
}
#[test]
fn two_expressions() {
let tokens = [BraceO, Number(10.0), Semi, Number(20.0), Semi, BraceC]
.map(token)
.into();
let ast = parse_block(tokens);
assert_eq!(
Block {
stmts: vec![Stmt::Expr(num_lit(10.0)), Stmt::Expr(num_lit(20.0)),],
span: Span::dummy()
},
ast
);
}
#[test]
fn nested() {
let tokens = [BraceO, BraceO, BraceC, BraceC].map(token).into();
let ast = parse_block(tokens);
assert_eq!(
Block {
stmts: vec![Stmt::Block(empty_block())],
span: Span::dummy()
},
ast
);
}
}
mod expr {
use super::prelude::*;
use crate::ast::{UnaryOp, UnaryOpKind};
fn parse_expr(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.expression().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_expr);
}
#[test]
fn add_multiply() {
let tokens = [Number(10.0), Plus, Number(20.0), Asterisk, Number(100.0)]
.map(token)
.into();
let expr = parse_expr(tokens);
assert_eq!(
Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: num_lit(10.0),
rhs: Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: num_lit(20.0),
rhs: num_lit(100.0),
kind: BinaryOpKind::Mul
})),
kind: BinaryOpKind::Add
})),
expr
);
}
#[test]
fn equal_unary() {
let tokens = [Number(10.0), EqualEqual, Minus, Number(10.0)]
.map(token)
.into();
let expr = parse_expr(tokens);
assert_eq!(
Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: num_lit(10.0),
rhs: Expr::UnaryOp(Box::new(UnaryOp {
span: Span::dummy(),
expr: num_lit(10.0),
kind: UnaryOpKind::Neg
})),
kind: BinaryOpKind::Equal
})),
expr
);
}
#[test]
fn parentheses_mul_add() {
let tokens = [
Number(10.0),
Asterisk,
ParenO,
Number(20.0),
Plus,
Number(30.0),
ParenC,
]
.map(token)
.into();
let expr = parse_expr(tokens);
assert_eq!(
Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: num_lit(10.0),
rhs: Expr::BinaryOp(Box::new(BinaryOp {
span: Span::dummy(),
lhs: num_lit(20.0),
rhs: num_lit(30.0),
kind: BinaryOpKind::Add
})),
kind: BinaryOpKind::Mul
})),
expr
);
}
}
mod logical_or {
use super::prelude::*;
fn parse_logical_or(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.logical_or().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_logical_or);
}
#[test]
fn and() {
test_literal_bin_op(Or, BinaryOpKind::Or, parse_logical_or);
}
}
mod logical_and {
use super::prelude::*;
fn parse_logical_and(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.logical_and().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_logical_and);
}
#[test]
fn and() {
test_literal_bin_op(And, BinaryOpKind::And, parse_logical_and);
}
}
mod equality {
use super::prelude::*;
fn parse_equality(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.equality().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_equality);
}
#[test]
fn not_equal() {
test_literal_bin_op(BangEqual, BinaryOpKind::NotEqual, parse_equality);
}
#[test]
fn equal() {
test_literal_bin_op(EqualEqual, BinaryOpKind::Equal, parse_equality);
}
}
mod comparison {
use super::prelude::*;
fn parse_comparison(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.comparison().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_comparison);
}
#[test]
fn greater() {
test_literal_bin_op(Greater, BinaryOpKind::Greater, parse_comparison);
}
#[test]
fn greater_equal() {
test_literal_bin_op(GreaterEqual, BinaryOpKind::GreaterEqual, parse_comparison);
}
#[test]
fn less() {
test_literal_bin_op(Less, BinaryOpKind::Less, parse_comparison);
}
#[test]
fn less_equal() {
test_literal_bin_op(LessEqual, BinaryOpKind::LessEqual, parse_comparison);
}
}
mod term {
use super::prelude::*;
fn parse_term(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.term().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_term);
}
#[test]
fn add() {
test_literal_bin_op(Plus, BinaryOpKind::Add, parse_term);
}
#[test]
fn sub() {
test_literal_bin_op(Minus, BinaryOpKind::Sub, parse_term);
}
}
mod factor {
use super::prelude::*;
fn parse_factor(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.factor().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_factor);
}
#[test]
fn multiply() {
test_literal_bin_op(Asterisk, BinaryOpKind::Mul, parse_factor);
}
#[test]
fn divide() {
test_literal_bin_op(Slash, BinaryOpKind::Div, parse_factor);
}
#[test]
fn modulo() {
test_literal_bin_op(Percent, BinaryOpKind::Mod, parse_factor);
}
}
mod unary {
use super::prelude::*;
use crate::ast::{UnaryOp, UnaryOpKind};
fn parse_unary(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.unary().unwrap()
}
#[test]
fn number_literal() {
test_number_literal(parse_unary);
}
// needs expr support
#[test]
fn not() {
let tokens = [Not, True].map(token).into();
let unary = parse_unary(tokens);
assert_eq!(
Expr::UnaryOp(Box::new(UnaryOp {
span: Span::dummy(),
expr: Expr::Literal(Literal::Boolean(true, Span::dummy())),
kind: UnaryOpKind::Not
})),
unary
);
}
#[test]
fn neg() {
let tokens = [Minus, Number(10.0)].map(token).into();
let unary = parse_unary(tokens);
assert_eq!(
Expr::UnaryOp(Box::new(UnaryOp {
span: Span::dummy(),
expr: num_lit(10.0),
kind: UnaryOpKind::Neg
})),
unary
);
}
}
mod primary {
use super::prelude::*;
fn parse_primary(tokens: Vec<Token>) -> Expr {
let mut parser = parser(tokens);
parser.primary().unwrap()
}
#[test]
fn ident() {
let tokens = [Ident("tokens")].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Ident(Ident {
name: "tokens".to_string(),
span: Span::dummy()
}),
literal
);
}
#[test]
fn string() {
let tokens = [Number(10.0)].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(num_lit(10.0), literal);
}
#[test]
fn number() {
let tokens = [String("uwu".to_string())].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::String("uwu".to_string(), Span::dummy())),
literal
);
}
#[test]
fn empty_object() {
let tokens = [BraceO, BraceC].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Object(Span::dummy())), literal);
}
#[test]
fn empty_array() {
let tokens = [BracketO, BracketC].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Array(Vec::new(), Span::dummy())),
literal
);
}
#[test]
fn r#false() {
let tokens = [False].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Boolean(false, Span::dummy())),
literal
);
}
#[test]
fn r#true() {
let tokens = [True].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Boolean(true, Span::dummy())),
literal
);
}
#[test]
fn null() {
let tokens = [Null].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(Expr::Literal(Literal::Null(Span::dummy())), literal);
}
#[test]
fn empty_array_literal() {
let tokens = [BracketO, BracketC].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Array(Vec::new(), Span::dummy())),
literal
);
}
#[test]
fn single_array_literal() {
let tokens = [BracketO, Number(10.0), BracketC].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Array(vec![num_lit(10.0)], Span::dummy())),
literal
);
}
#[test]
fn single_array_literal_trailing_comma() {
let tokens = [BracketO, Number(10.0), Comma, BracketC].map(token).into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Array(vec![num_lit(10.0)], Span::dummy())),
literal
);
}
#[test]
fn two_array_literal() {
let tokens = [BracketO, Number(10.0), Comma, Number(10.0), BracketC]
.map(token)
.into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Array(
vec![num_lit(10.0), num_lit(10.0)],
Span::dummy()
)),
literal
);
}
#[test]
fn two_array_literal_trailing_comma() {
let tokens = [BracketO, Number(10.0), Comma, Number(10.0), Comma, BracketC]
.map(token)
.into();
let literal = parse_primary(tokens);
assert_eq!(
Expr::Literal(Literal::Array(
vec![num_lit(10.0), num_lit(10.0)],
Span::dummy()
)),
literal
);
}
#[test]
fn two_array_literal_no_comma() {
let tokens = [BracketO, Number(10.0), Number(10.0), BracketC]
.map(token)
.into();
let mut parser = parser(tokens);
let expr = parser.primary();
assert!(expr.is_err());
}
}