This commit is contained in:
nora 2023-04-18 15:38:14 +02:00
parent 12163d1338
commit 550b1644cb
363 changed files with 84081 additions and 16 deletions

View file

@ -0,0 +1,44 @@
[package]
name = "emath"
version = "0.21.0"
authors = ["Emil Ernerfeldt <emil.ernerfeldt@gmail.com>"]
description = "Minimal 2D math library for GUI work"
edition = "2021"
rust-version = "1.65"
homepage = "https://github.com/emilk/egui/tree/master/crates/emath"
license = "MIT OR Apache-2.0"
readme = "README.md"
repository = "https://github.com/emilk/egui/tree/master/crates/emath"
categories = ["mathematics", "gui"]
keywords = ["math", "gui"]
include = ["../LICENSE-APACHE", "../LICENSE-MIT", "**/*.rs", "Cargo.toml"]
[package.metadata.docs.rs]
all-features = true
[lib]
[features]
default = []
## Enable additional checks if debug assertions are enabled (debug builds).
extra_debug_asserts = []
## Always enable additional checks.
extra_asserts = []
[dependencies]
#! ### Optional dependencies
## [`bytemuck`](https://docs.rs/bytemuck) enables you to cast `emath` types to `&[u8]`.
bytemuck = { version = "1.7.2", optional = true, features = ["derive"] }
## Enable this when generating docs.
document-features = { version = "0.2", optional = true }
## [`mint`](https://docs.rs/mint) enables interoperability with other math libraries such as [`glam`](https://docs.rs/glam) and [`nalgebra`](https://docs.rs/nalgebra).
mint = { version = "0.5.6", optional = true }
## Allow serialization using [`serde`](https://docs.rs/serde).
serde = { version = "1", optional = true, features = ["derive"] }

View file

@ -0,0 +1,11 @@
# emath - egui math library
[![Latest version](https://img.shields.io/crates/v/emath.svg)](https://crates.io/crates/emath)
[![Documentation](https://docs.rs/emath/badge.svg)](https://docs.rs/emath)
[![unsafe forbidden](https://img.shields.io/badge/unsafe-forbidden-success.svg)](https://github.com/rust-secure-code/safety-dance/)
![MIT](https://img.shields.io/badge/license-MIT-blue.svg)
![Apache](https://img.shields.io/badge/license-Apache-blue.svg)
A bare-bones 2D math library with types and functions useful for GUI building.
Made for [`egui`](https://github.com/emilk/egui/).

View file

@ -0,0 +1,265 @@
//! One- and two-dimensional alignment ([`Align::Center`], [`Align2::LEFT_TOP`] etc).
use crate::*;
/// left/center/right or top/center/bottom alignment for e.g. anchors and layouts.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub enum Align {
/// Left or top.
Min,
/// Horizontal or vertical center.
Center,
/// Right or bottom.
Max,
}
impl Align {
/// Convenience for [`Self::Min`]
pub const LEFT: Self = Self::Min;
/// Convenience for [`Self::Max`]
pub const RIGHT: Self = Self::Max;
/// Convenience for [`Self::Min`]
pub const TOP: Self = Self::Min;
/// Convenience for [`Self::Max`]
pub const BOTTOM: Self = Self::Max;
/// Convert `Min => 0.0`, `Center => 0.5` or `Max => 1.0`.
#[inline(always)]
pub fn to_factor(self) -> f32 {
match self {
Self::Min => 0.0,
Self::Center => 0.5,
Self::Max => 1.0,
}
}
/// Convert `Min => -1.0`, `Center => 0.0` or `Max => 1.0`.
#[inline(always)]
pub fn to_sign(self) -> f32 {
match self {
Self::Min => -1.0,
Self::Center => 0.0,
Self::Max => 1.0,
}
}
/// Returns a range of given size within a specified range.
///
/// If the requested `size` is bigger than the size of `range`, then the returned
/// range will not fit into the available `range`. The extra space will be allocated
/// from:
///
/// |Align |Side |
/// |------|------------|
/// |Min |right (end) |
/// |Center|both |
/// |Max |left (start)|
///
/// # Examples
/// ```
/// use std::f32::{INFINITY, NEG_INFINITY};
/// use emath::Align::*;
///
/// // The size is smaller than a range
/// assert_eq!(Min .align_size_within_range(2.0, 10.0..=20.0), 10.0..=12.0);
/// assert_eq!(Center.align_size_within_range(2.0, 10.0..=20.0), 14.0..=16.0);
/// assert_eq!(Max .align_size_within_range(2.0, 10.0..=20.0), 18.0..=20.0);
///
/// // The size is bigger than a range
/// assert_eq!(Min .align_size_within_range(20.0, 10.0..=20.0), 10.0..=30.0);
/// assert_eq!(Center.align_size_within_range(20.0, 10.0..=20.0), 5.0..=25.0);
/// assert_eq!(Max .align_size_within_range(20.0, 10.0..=20.0), 0.0..=20.0);
///
/// // The size is infinity, but range is finite - a special case of a previous example
/// assert_eq!(Min .align_size_within_range(INFINITY, 10.0..=20.0), 10.0..=INFINITY);
/// assert_eq!(Center.align_size_within_range(INFINITY, 10.0..=20.0), NEG_INFINITY..=INFINITY);
/// assert_eq!(Max .align_size_within_range(INFINITY, 10.0..=20.0), NEG_INFINITY..=20.0);
/// ```
///
/// The infinity-sized ranges can produce a surprising results, if the size is also infinity,
/// use such ranges with carefully!
///
/// ```
/// use std::f32::{INFINITY, NEG_INFINITY};
/// use emath::Align::*;
///
/// // Allocating a size aligned for infinity bound will lead to empty ranges!
/// assert_eq!(Min .align_size_within_range(2.0, 10.0..=INFINITY), 10.0..=12.0);
/// assert_eq!(Center.align_size_within_range(2.0, 10.0..=INFINITY), INFINITY..=INFINITY);// (!)
/// assert_eq!(Max .align_size_within_range(2.0, 10.0..=INFINITY), INFINITY..=INFINITY);// (!)
///
/// assert_eq!(Min .align_size_within_range(2.0, NEG_INFINITY..=20.0), NEG_INFINITY..=NEG_INFINITY);// (!)
/// assert_eq!(Center.align_size_within_range(2.0, NEG_INFINITY..=20.0), NEG_INFINITY..=NEG_INFINITY);// (!)
/// assert_eq!(Max .align_size_within_range(2.0, NEG_INFINITY..=20.0), 18.0..=20.0);
///
///
/// // The infinity size will always return the given range if it has at least one infinity bound
/// assert_eq!(Min .align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
/// assert_eq!(Center.align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
/// assert_eq!(Max .align_size_within_range(INFINITY, 10.0..=INFINITY), 10.0..=INFINITY);
///
/// assert_eq!(Min .align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
/// assert_eq!(Center.align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
/// assert_eq!(Max .align_size_within_range(INFINITY, NEG_INFINITY..=20.0), NEG_INFINITY..=20.0);
/// ```
#[inline]
pub fn align_size_within_range(
self,
size: f32,
range: RangeInclusive<f32>,
) -> RangeInclusive<f32> {
let min = *range.start();
let max = *range.end();
if max - min == f32::INFINITY && size == f32::INFINITY {
return range;
}
match self {
Self::Min => min..=min + size,
Self::Center => {
if size == f32::INFINITY {
f32::NEG_INFINITY..=f32::INFINITY
} else {
let left = (min + max) / 2.0 - size / 2.0;
left..=left + size
}
}
Self::Max => max - size..=max,
}
}
}
impl Default for Align {
#[inline(always)]
fn default() -> Align {
Align::Min
}
}
// ----------------------------------------------------------------------------
/// Two-dimension alignment, e.g. [`Align2::LEFT_TOP`].
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Align2(pub [Align; 2]);
impl Align2 {
pub const LEFT_BOTTOM: Align2 = Align2([Align::Min, Align::Max]);
pub const LEFT_CENTER: Align2 = Align2([Align::Min, Align::Center]);
pub const LEFT_TOP: Align2 = Align2([Align::Min, Align::Min]);
pub const CENTER_BOTTOM: Align2 = Align2([Align::Center, Align::Max]);
pub const CENTER_CENTER: Align2 = Align2([Align::Center, Align::Center]);
pub const CENTER_TOP: Align2 = Align2([Align::Center, Align::Min]);
pub const RIGHT_BOTTOM: Align2 = Align2([Align::Max, Align::Max]);
pub const RIGHT_CENTER: Align2 = Align2([Align::Max, Align::Center]);
pub const RIGHT_TOP: Align2 = Align2([Align::Max, Align::Min]);
}
impl Align2 {
/// Returns an alignment by the X (horizontal) axis
#[inline(always)]
pub fn x(self) -> Align {
self.0[0]
}
/// Returns an alignment by the Y (vertical) axis
#[inline(always)]
pub fn y(self) -> Align {
self.0[1]
}
/// -1, 0, or +1 for each axis
pub fn to_sign(self) -> Vec2 {
vec2(self.x().to_sign(), self.y().to_sign())
}
/// Used e.g. to anchor a piece of text to a part of the rectangle.
/// Give a position within the rect, specified by the aligns
pub fn anchor_rect(self, rect: Rect) -> Rect {
let x = match self.x() {
Align::Min => rect.left(),
Align::Center => rect.left() - 0.5 * rect.width(),
Align::Max => rect.left() - rect.width(),
};
let y = match self.y() {
Align::Min => rect.top(),
Align::Center => rect.top() - 0.5 * rect.height(),
Align::Max => rect.top() - rect.height(),
};
Rect::from_min_size(pos2(x, y), rect.size())
}
/// e.g. center a size within a given frame
pub fn align_size_within_rect(self, size: Vec2, frame: Rect) -> Rect {
let x_range = self.x().align_size_within_range(size.x, frame.x_range());
let y_range = self.y().align_size_within_range(size.y, frame.y_range());
Rect::from_x_y_ranges(x_range, y_range)
}
/// Returns the point on the rect's frame or in the center of a rect according
/// to the alignments of this object.
///
/// ```text
/// (*)-----------+------(*)------+-----------(*)--> X
/// | | | |
/// | Min, Min | Center, Min | Max, Min |
/// | | | |
/// +------------+---------------+------------+
/// | | | |
/// (*)Min, Center|Center(*)Center|Max, Center(*)
/// | | | |
/// +------------+---------------+------------+
/// | | | |
/// | Min, Max | Center, Max | Max, Max |
/// | | | |
/// (*)-----------+------(*)------+-----------(*)
/// |
/// Y
/// ```
pub fn pos_in_rect(self, frame: &Rect) -> Pos2 {
let x = match self.x() {
Align::Min => frame.left(),
Align::Center => frame.center().x,
Align::Max => frame.right(),
};
let y = match self.y() {
Align::Min => frame.top(),
Align::Center => frame.center().y,
Align::Max => frame.bottom(),
};
pos2(x, y)
}
}
impl std::ops::Index<usize> for Align2 {
type Output = Align;
#[inline(always)]
fn index(&self, index: usize) -> &Align {
&self.0[index]
}
}
impl std::ops::IndexMut<usize> for Align2 {
#[inline(always)]
fn index_mut(&mut self, index: usize) -> &mut Align {
&mut self.0[index]
}
}
/// Allocates a rectangle of the specified `size` inside the `frame` rectangle
/// around of its center.
///
/// If `size` is bigger than the `frame`s size the returned rect will bounce out
/// of the `frame`.
pub fn center_size_in_rect(size: Vec2, frame: Rect) -> Rect {
Align2::CENTER_CENTER.align_size_within_rect(size, frame)
}

View file

@ -0,0 +1,229 @@
use std::collections::VecDeque;
/// This struct tracks recent values of some time series.
///
/// It can be used as a smoothing filter for e.g. latency, fps etc,
/// or to show a log or graph of recent events.
///
/// It has a minimum and maximum length, as well as a maximum storage time.
/// * The minimum length is to ensure you have enough data for an estimate.
/// * The maximum length is to make sure the history doesn't take up too much space.
/// * The maximum age is to make sure the estimate isn't outdated.
///
/// Time difference between values can be zero, but never negative.
///
/// This can be used for things like smoothed averages (for e.g. FPS)
/// or for smoothed velocity (e.g. mouse pointer speed).
/// All times are in seconds.
#[derive(Clone, Debug)]
pub struct History<T> {
/// In elements, i.e. of `values.len()`.
/// The length is initially zero, but once past `min_len` will not shrink below it.
min_len: usize,
/// In elements, i.e. of `values.len()`.
max_len: usize,
/// In seconds.
max_age: f32,
/// Total number of elements seen ever
total_count: u64,
/// (time, value) pairs, oldest front, newest back.
/// Time difference between values can be zero, but never negative.
values: VecDeque<(f64, T)>,
}
impl<T> History<T>
where
T: Copy,
{
/// Example:
/// ```
/// # use emath::History;
/// # fn now() -> f64 { 0.0 }
/// // Drop events that are older than one second,
/// // as long we keep at least two events. Never keep more than a hundred events.
/// let mut history = History::new(2..100, 1.0);
/// assert_eq!(history.average(), None);
/// history.add(now(), 40.0_f32);
/// history.add(now(), 44.0_f32);
/// assert_eq!(history.average(), Some(42.0));
/// ```
pub fn new(length_range: std::ops::Range<usize>, max_age: f32) -> Self {
Self {
min_len: length_range.start,
max_len: length_range.end,
max_age,
total_count: 0,
values: Default::default(),
}
}
#[inline]
pub fn max_len(&self) -> usize {
self.max_len
}
#[inline]
pub fn max_age(&self) -> f32 {
self.max_age
}
#[inline]
pub fn is_empty(&self) -> bool {
self.values.is_empty()
}
/// Current number of values kept in history
#[inline]
pub fn len(&self) -> usize {
self.values.len()
}
/// Total number of values seen.
/// Includes those that have been discarded due to `max_len` or `max_age`.
#[inline]
pub fn total_count(&self) -> u64 {
self.total_count
}
pub fn latest(&self) -> Option<T> {
self.values.back().map(|(_, value)| *value)
}
pub fn latest_mut(&mut self) -> Option<&mut T> {
self.values.back_mut().map(|(_, value)| value)
}
/// Amount of time contained from start to end in this [`History`].
pub fn duration(&self) -> f32 {
if let (Some(front), Some(back)) = (self.values.front(), self.values.back()) {
(back.0 - front.0) as f32
} else {
0.0
}
}
/// `(time, value)` pairs
/// Time difference between values can be zero, but never negative.
// TODO(emilk): impl IntoIter
pub fn iter(&'_ self) -> impl ExactSizeIterator<Item = (f64, T)> + '_ {
self.values.iter().map(|(time, value)| (*time, *value))
}
pub fn values(&'_ self) -> impl ExactSizeIterator<Item = T> + '_ {
self.values.iter().map(|(_time, value)| *value)
}
#[inline]
pub fn clear(&mut self) {
self.values.clear();
}
/// Values must be added with a monotonically increasing time, or at least not decreasing.
pub fn add(&mut self, now: f64, value: T) {
if let Some((last_time, _)) = self.values.back() {
crate::emath_assert!(now >= *last_time, "Time shouldn't move backwards");
}
self.total_count += 1;
self.values.push_back((now, value));
self.flush(now);
}
/// Mean time difference between values in this [`History`].
pub fn mean_time_interval(&self) -> Option<f32> {
if let (Some(first), Some(last)) = (self.values.front(), self.values.back()) {
let n = self.len();
if n >= 2 {
Some((last.0 - first.0) as f32 / ((n - 1) as f32))
} else {
None
}
} else {
None
}
}
// Mean number of events per second.
pub fn rate(&self) -> Option<f32> {
self.mean_time_interval().map(|time| 1.0 / time)
}
/// Remove samples that are too old.
pub fn flush(&mut self, now: f64) {
while self.values.len() > self.max_len {
self.values.pop_front();
}
while self.values.len() > self.min_len {
if let Some((front_time, _)) = self.values.front() {
if *front_time < now - (self.max_age as f64) {
self.values.pop_front();
} else {
break;
}
} else {
break;
}
}
}
}
impl<T> History<T>
where
T: Copy,
T: std::iter::Sum,
T: std::ops::Div<f32, Output = T>,
{
#[inline]
pub fn sum(&self) -> T {
self.values().sum()
}
pub fn average(&self) -> Option<T> {
let num = self.len();
if num > 0 {
Some(self.sum() / (num as f32))
} else {
None
}
}
}
impl<T> History<T>
where
T: Copy,
T: std::iter::Sum,
T: std::ops::Div<f32, Output = T>,
T: std::ops::Mul<f32, Output = T>,
{
/// Average times rate.
/// If you are keeping track of individual sizes of things (e.g. bytes),
/// this will estimate the bandwidth (bytes per second).
pub fn bandwidth(&self) -> Option<T> {
Some(self.average()? * self.rate()?)
}
}
impl<T, Vel> History<T>
where
T: Copy,
T: std::ops::Sub<Output = Vel>,
Vel: std::ops::Div<f32, Output = Vel>,
{
/// Calculate a smooth velocity (per second) over the entire time span.
/// Calculated as the last value minus the first value over the elapsed time between them.
pub fn velocity(&self) -> Option<Vel> {
if let (Some(first), Some(last)) = (self.values.front(), self.values.back()) {
let dt = (last.0 - first.0) as f32;
if dt > 0.0 {
Some((last.1 - first.1) / dt)
} else {
None
}
} else {
None
}
}
}

View file

@ -0,0 +1,392 @@
//! Opinionated 2D math library for building GUIs.
//!
//! Includes vectors, positions, rectangles etc.
//!
//! Conventions (unless otherwise specified):
//!
//! * All angles are in radians
//! * X+ is right and Y+ is down.
//! * (0,0) is left top.
//! * Dimension order is always `x y`
//!
//! ## Integrating with other math libraries.
//! `emath` does not strive to become a general purpose or all-powerful math library.
//!
//! For that, use something else ([`glam`](https://docs.rs/glam), [`nalgebra`](https://docs.rs/nalgebra), …)
//! and enable the `mint` feature flag in `emath` to enable implicit conversion to/from `emath`.
//!
//! ## Feature flags
#![cfg_attr(feature = "document-features", doc = document_features::document_features!())]
//!
#![allow(clippy::float_cmp)]
#![forbid(unsafe_code)]
use std::ops::{Add, Div, Mul, RangeInclusive, Sub};
// ----------------------------------------------------------------------------
pub mod align;
mod history;
mod numeric;
mod pos2;
mod rect;
mod rect_transform;
mod rot2;
pub mod smart_aim;
mod vec2;
pub use {
align::{Align, Align2},
history::History,
numeric::*,
pos2::*,
rect::*,
rect_transform::*,
rot2::*,
vec2::*,
};
// ----------------------------------------------------------------------------
/// Helper trait to implement [`lerp`] and [`remap`].
pub trait One {
fn one() -> Self;
}
impl One for f32 {
#[inline(always)]
fn one() -> Self {
1.0
}
}
impl One for f64 {
#[inline(always)]
fn one() -> Self {
1.0
}
}
/// Helper trait to implement [`lerp`] and [`remap`].
pub trait Real:
Copy
+ PartialEq
+ PartialOrd
+ One
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Mul<Self, Output = Self>
+ Div<Self, Output = Self>
{
}
impl Real for f32 {}
impl Real for f64 {}
// ----------------------------------------------------------------------------
/// Linear interpolation.
///
/// ```
/// # use emath::lerp;
/// assert_eq!(lerp(1.0..=5.0, 0.0), 1.0);
/// assert_eq!(lerp(1.0..=5.0, 0.5), 3.0);
/// assert_eq!(lerp(1.0..=5.0, 1.0), 5.0);
/// assert_eq!(lerp(1.0..=5.0, 2.0), 9.0);
/// ```
#[inline(always)]
pub fn lerp<R, T>(range: RangeInclusive<R>, t: T) -> R
where
T: Real + Mul<R, Output = R>,
R: Copy + Add<R, Output = R>,
{
(T::one() - t) * *range.start() + t * *range.end()
}
/// Where in the range is this value? Returns 0-1 if within the range.
///
/// Returns <0 if before and >1 if after.
///
/// Returns `None` if the input range is zero-width.
///
/// ```
/// # use emath::inverse_lerp;
/// assert_eq!(inverse_lerp(1.0..=5.0, 1.0), Some(0.0));
/// assert_eq!(inverse_lerp(1.0..=5.0, 3.0), Some(0.5));
/// assert_eq!(inverse_lerp(1.0..=5.0, 5.0), Some(1.0));
/// assert_eq!(inverse_lerp(1.0..=5.0, 9.0), Some(2.0));
/// assert_eq!(inverse_lerp(1.0..=1.0, 3.0), None);
/// ```
#[inline]
pub fn inverse_lerp<R>(range: RangeInclusive<R>, value: R) -> Option<R>
where
R: Copy + PartialEq + Sub<R, Output = R> + Div<R, Output = R>,
{
let min = *range.start();
let max = *range.end();
if min == max {
None
} else {
Some((value - min) / (max - min))
}
}
/// Linearly remap a value from one range to another,
/// so that when `x == from.start()` returns `to.start()`
/// and when `x == from.end()` returns `to.end()`.
pub fn remap<T>(x: T, from: RangeInclusive<T>, to: RangeInclusive<T>) -> T
where
T: Real,
{
crate::emath_assert!(from.start() != from.end());
let t = (x - *from.start()) / (*from.end() - *from.start());
lerp(to, t)
}
/// Like [`remap`], but also clamps the value so that the returned value is always in the `to` range.
pub fn remap_clamp<T>(x: T, from: RangeInclusive<T>, to: RangeInclusive<T>) -> T
where
T: Real,
{
if from.end() < from.start() {
return remap_clamp(x, *from.end()..=*from.start(), *to.end()..=*to.start());
}
if x <= *from.start() {
*to.start()
} else if *from.end() <= x {
*to.end()
} else {
crate::emath_assert!(from.start() != from.end());
let t = (x - *from.start()) / (*from.end() - *from.start());
// Ensure no numerical inaccuracies sneak in:
if T::one() <= t {
*to.end()
} else {
lerp(to, t)
}
}
}
/// Round a value to the given number of decimal places.
pub fn round_to_decimals(value: f64, decimal_places: usize) -> f64 {
// This is a stupid way of doing this, but stupid works.
format!("{:.*}", decimal_places, value)
.parse()
.unwrap_or(value)
}
pub fn format_with_minimum_decimals(value: f64, decimals: usize) -> String {
format_with_decimals_in_range(value, decimals..=6)
}
pub fn format_with_decimals_in_range(value: f64, decimal_range: RangeInclusive<usize>) -> String {
let min_decimals = *decimal_range.start();
let max_decimals = *decimal_range.end();
crate::emath_assert!(min_decimals <= max_decimals);
crate::emath_assert!(max_decimals < 100);
let max_decimals = max_decimals.min(16);
let min_decimals = min_decimals.min(max_decimals);
if min_decimals != max_decimals {
// Ugly/slow way of doing this. TODO(emilk): clean up precision.
for decimals in min_decimals..max_decimals {
let text = format!("{:.*}", decimals, value);
let epsilon = 16.0 * f32::EPSILON; // margin large enough to handle most peoples round-tripping needs
if almost_equal(text.parse::<f32>().unwrap(), value as f32, epsilon) {
// Enough precision to show the value accurately - good!
return text;
}
}
// The value has more precision than we expected.
// Probably the value was set not by the slider, but from outside.
// In any case: show the full value
}
format!("{:.*}", max_decimals, value)
}
/// Return true when arguments are the same within some rounding error.
///
/// For instance `almost_equal(x, x.to_degrees().to_radians(), f32::EPSILON)` should hold true for all x.
/// The `epsilon` can be `f32::EPSILON` to handle simple transforms (like degrees -> radians)
/// but should be higher to handle more complex transformations.
pub fn almost_equal(a: f32, b: f32, epsilon: f32) -> bool {
if a == b {
true // handle infinites
} else {
let abs_max = a.abs().max(b.abs());
abs_max <= epsilon || ((a - b).abs() / abs_max) <= epsilon
}
}
#[allow(clippy::approx_constant)]
#[test]
fn test_format() {
assert_eq!(format_with_minimum_decimals(1_234_567.0, 0), "1234567");
assert_eq!(format_with_minimum_decimals(1_234_567.0, 1), "1234567.0");
assert_eq!(format_with_minimum_decimals(3.14, 2), "3.14");
assert_eq!(format_with_minimum_decimals(3.14, 3), "3.140");
assert_eq!(
format_with_minimum_decimals(std::f64::consts::PI, 2),
"3.14159"
);
}
#[test]
fn test_almost_equal() {
for &x in &[
0.0_f32,
f32::MIN_POSITIVE,
1e-20,
1e-10,
f32::EPSILON,
0.1,
0.99,
1.0,
1.001,
1e10,
f32::MAX / 100.0,
// f32::MAX, // overflows in rad<->deg test
f32::INFINITY,
] {
for &x in &[-x, x] {
for roundtrip in &[
|x: f32| x.to_degrees().to_radians(),
|x: f32| x.to_radians().to_degrees(),
] {
let epsilon = f32::EPSILON;
assert!(
almost_equal(x, roundtrip(x), epsilon),
"{} vs {}",
x,
roundtrip(x)
);
}
}
}
}
#[test]
fn test_remap() {
assert_eq!(remap_clamp(1.0, 0.0..=1.0, 0.0..=16.0), 16.0);
assert_eq!(remap_clamp(1.0, 1.0..=0.0, 16.0..=0.0), 16.0);
assert_eq!(remap_clamp(0.5, 1.0..=0.0, 16.0..=0.0), 8.0);
}
// ----------------------------------------------------------------------------
/// Extends `f32`, [`Vec2`] etc with `at_least` and `at_most` as aliases for `max` and `min`.
pub trait NumExt {
/// More readable version of `self.max(lower_limit)`
#[must_use]
fn at_least(self, lower_limit: Self) -> Self;
/// More readable version of `self.min(upper_limit)`
#[must_use]
fn at_most(self, upper_limit: Self) -> Self;
}
macro_rules! impl_num_ext {
($t: ty) => {
impl NumExt for $t {
#[inline(always)]
fn at_least(self, lower_limit: Self) -> Self {
self.max(lower_limit)
}
#[inline(always)]
fn at_most(self, upper_limit: Self) -> Self {
self.min(upper_limit)
}
}
};
}
impl_num_ext!(u8);
impl_num_ext!(u16);
impl_num_ext!(u32);
impl_num_ext!(u64);
impl_num_ext!(u128);
impl_num_ext!(usize);
impl_num_ext!(i8);
impl_num_ext!(i16);
impl_num_ext!(i32);
impl_num_ext!(i64);
impl_num_ext!(i128);
impl_num_ext!(isize);
impl_num_ext!(f32);
impl_num_ext!(f64);
impl_num_ext!(Vec2);
impl_num_ext!(Pos2);
// ----------------------------------------------------------------------------
/// Wrap angle to `[-PI, PI]` range.
pub fn normalized_angle(mut angle: f32) -> f32 {
use std::f32::consts::{PI, TAU};
angle %= TAU;
if angle > PI {
angle -= TAU;
} else if angle < -PI {
angle += TAU;
}
angle
}
#[test]
fn test_normalized_angle() {
macro_rules! almost_eq {
($left: expr, $right: expr) => {
let left = $left;
let right = $right;
assert!((left - right).abs() < 1e-6, "{} != {}", left, right);
};
}
use std::f32::consts::TAU;
almost_eq!(normalized_angle(-3.0 * TAU), 0.0);
almost_eq!(normalized_angle(-2.3 * TAU), -0.3 * TAU);
almost_eq!(normalized_angle(-TAU), 0.0);
almost_eq!(normalized_angle(0.0), 0.0);
almost_eq!(normalized_angle(TAU), 0.0);
almost_eq!(normalized_angle(2.7 * TAU), -0.3 * TAU);
}
// ----------------------------------------------------------------------------
/// Calculate a lerp-factor for exponential smoothing using a time step.
///
/// * `exponential_smooth_factor(0.90, 1.0, dt)`: reach 90% in 1.0 seconds
/// * `exponential_smooth_factor(0.50, 0.2, dt)`: reach 50% in 0.2 seconds
///
/// Example:
/// ```
/// # use emath::{lerp, exponential_smooth_factor};
/// # let (mut smoothed_value, target_value, dt) = (0.0_f32, 1.0_f32, 0.01_f32);
/// let t = exponential_smooth_factor(0.90, 0.2, dt); // reach 90% in 0.2 seconds
/// smoothed_value = lerp(smoothed_value..=target_value, t);
/// ```
pub fn exponential_smooth_factor(
reach_this_fraction: f32,
in_this_many_seconds: f32,
dt: f32,
) -> f32 {
1.0 - (1.0 - reach_this_fraction).powf(dt / in_this_many_seconds)
}
// ----------------------------------------------------------------------------
/// An assert that is only active when `emath` is compiled with the `extra_asserts` feature
/// or with the `extra_debug_asserts` feature in debug builds.
#[macro_export]
macro_rules! emath_assert {
($($arg: tt)*) => {
if cfg!(any(
feature = "extra_asserts",
all(feature = "extra_debug_asserts", debug_assertions),
)) {
assert!($($arg)*);
}
}
}

View file

@ -0,0 +1,74 @@
/// Implemented for all builtin numeric types
pub trait Numeric: Clone + Copy + PartialEq + PartialOrd + 'static {
/// Is this an integer type?
const INTEGRAL: bool;
/// Smallest finite value
const MIN: Self;
/// Largest finite value
const MAX: Self;
fn to_f64(self) -> f64;
fn from_f64(num: f64) -> Self;
}
macro_rules! impl_numeric_float {
($t: ident) => {
impl Numeric for $t {
const INTEGRAL: bool = false;
const MIN: Self = std::$t::MIN;
const MAX: Self = std::$t::MAX;
#[inline(always)]
fn to_f64(self) -> f64 {
#[allow(trivial_numeric_casts)]
{
self as f64
}
}
#[inline(always)]
fn from_f64(num: f64) -> Self {
#[allow(trivial_numeric_casts)]
{
num as Self
}
}
}
};
}
macro_rules! impl_numeric_integer {
($t: ident) => {
impl Numeric for $t {
const INTEGRAL: bool = true;
const MIN: Self = std::$t::MIN;
const MAX: Self = std::$t::MAX;
#[inline(always)]
fn to_f64(self) -> f64 {
self as f64
}
#[inline(always)]
fn from_f64(num: f64) -> Self {
num as Self
}
}
};
}
impl_numeric_float!(f32);
impl_numeric_float!(f64);
impl_numeric_integer!(i8);
impl_numeric_integer!(u8);
impl_numeric_integer!(i16);
impl_numeric_integer!(u16);
impl_numeric_integer!(i32);
impl_numeric_integer!(u32);
impl_numeric_integer!(i64);
impl_numeric_integer!(u64);
impl_numeric_integer!(isize);
impl_numeric_integer!(usize);

View file

@ -0,0 +1,279 @@
use std::ops::{Add, AddAssign, Sub, SubAssign};
use crate::*;
/// A position on screen.
///
/// Normally given in points (logical pixels).
///
/// Mathematically this is known as a "point", but the term position was chosen so not to
/// conflict with the unit (one point = X physical pixels).
#[repr(C)]
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Pos2 {
/// How far to the right.
pub x: f32,
/// How far down.
pub y: f32,
// implicit w = 1
}
/// `pos2(x, y) == Pos2::new(x, y)`
#[inline(always)]
pub const fn pos2(x: f32, y: f32) -> Pos2 {
Pos2 { x, y }
}
// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from [f32; 2]:
impl From<[f32; 2]> for Pos2 {
#[inline(always)]
fn from(v: [f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<&[f32; 2]> for Pos2 {
#[inline(always)]
fn from(v: &[f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<Pos2> for [f32; 2] {
#[inline(always)]
fn from(v: Pos2) -> Self {
[v.x, v.y]
}
}
impl From<&Pos2> for [f32; 2] {
#[inline(always)]
fn from(v: &Pos2) -> Self {
[v.x, v.y]
}
}
// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from (f32, f32):
impl From<(f32, f32)> for Pos2 {
#[inline(always)]
fn from(v: (f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<&(f32, f32)> for Pos2 {
#[inline(always)]
fn from(v: &(f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<Pos2> for (f32, f32) {
#[inline(always)]
fn from(v: Pos2) -> Self {
(v.x, v.y)
}
}
impl From<&Pos2> for (f32, f32) {
#[inline(always)]
fn from(v: &Pos2) -> Self {
(v.x, v.y)
}
}
// ----------------------------------------------------------------------------
// Mint compatibility and convenience conversions
#[cfg(feature = "mint")]
impl From<mint::Point2<f32>> for Pos2 {
#[inline(always)]
fn from(v: mint::Point2<f32>) -> Self {
Self::new(v.x, v.y)
}
}
#[cfg(feature = "mint")]
impl From<Pos2> for mint::Point2<f32> {
#[inline(always)]
fn from(v: Pos2) -> Self {
Self { x: v.x, y: v.y }
}
}
// ----------------------------------------------------------------------------
impl Pos2 {
/// The zero position, the origin.
/// The top left corner in a GUI.
/// Same as `Pos2::default()`.
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
#[inline(always)]
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
/// The vector from origin to this position.
/// `p.to_vec2()` is equivalent to `p - Pos2::default()`.
#[inline(always)]
pub fn to_vec2(self) -> Vec2 {
Vec2 {
x: self.x,
y: self.y,
}
}
#[inline]
pub fn distance(self, other: Self) -> f32 {
(self - other).length()
}
#[inline]
pub fn distance_sq(self, other: Self) -> f32 {
(self - other).length_sq()
}
#[inline(always)]
pub fn floor(self) -> Self {
pos2(self.x.floor(), self.y.floor())
}
#[inline(always)]
pub fn round(self) -> Self {
pos2(self.x.round(), self.y.round())
}
#[inline(always)]
pub fn ceil(self) -> Self {
pos2(self.x.ceil(), self.y.ceil())
}
/// True if all members are also finite.
#[inline(always)]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
/// True if any member is NaN.
#[inline(always)]
pub fn any_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan()
}
#[must_use]
#[inline]
pub fn min(self, other: Self) -> Self {
pos2(self.x.min(other.x), self.y.min(other.y))
}
#[must_use]
#[inline]
pub fn max(self, other: Self) -> Self {
pos2(self.x.max(other.x), self.y.max(other.y))
}
#[must_use]
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
Self {
x: self.x.clamp(min.x, max.x),
y: self.y.clamp(min.y, max.y),
}
}
}
impl std::ops::Index<usize> for Pos2 {
type Output = f32;
#[inline(always)]
fn index(&self, index: usize) -> &f32 {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("Pos2 index out of bounds: {}", index),
}
}
}
impl std::ops::IndexMut<usize> for Pos2 {
#[inline(always)]
fn index_mut(&mut self, index: usize) -> &mut f32 {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("Pos2 index out of bounds: {}", index),
}
}
}
impl Eq for Pos2 {}
impl AddAssign<Vec2> for Pos2 {
#[inline(always)]
fn add_assign(&mut self, rhs: Vec2) {
*self = Pos2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
};
}
}
impl SubAssign<Vec2> for Pos2 {
#[inline(always)]
fn sub_assign(&mut self, rhs: Vec2) {
*self = Pos2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
};
}
}
impl Add<Vec2> for Pos2 {
type Output = Pos2;
#[inline(always)]
fn add(self, rhs: Vec2) -> Pos2 {
Pos2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl Sub for Pos2 {
type Output = Vec2;
#[inline(always)]
fn sub(self, rhs: Pos2) -> Vec2 {
Vec2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl Sub<Vec2> for Pos2 {
type Output = Pos2;
#[inline(always)]
fn sub(self, rhs: Vec2) -> Pos2 {
Pos2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
impl std::fmt::Debug for Pos2 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "[{:.1} {:.1}]", self.x, self.y)
}
}

View file

@ -0,0 +1,537 @@
use std::f32::INFINITY;
use std::ops::RangeInclusive;
use crate::*;
/// A rectangular region of space.
///
/// Usually a [`Rect`] has a positive (or zero) size,
/// and then [`Self::min`] `<=` [`Self::max`].
/// In these cases [`Self::min`] is the left-top corner
/// and [`Self::max`] is the right-bottom corner.
///
/// A rectangle is allowed to have a negative size, which happens when the order
/// of `min` and `max` are swapped. These are usually a sign of an error.
///
/// Normally the unit is points (logical pixels) in screen space coordinates.
#[repr(C)]
#[derive(Clone, Copy, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Rect {
/// One of the corners of the rectangle, usually the left top one.
pub min: Pos2,
/// The other corner, opposing [`Self::min`]. Usually the right bottom one.
pub max: Pos2,
}
impl Rect {
/// Infinite rectangle that contains every point.
pub const EVERYTHING: Self = Self {
min: pos2(-INFINITY, -INFINITY),
max: pos2(INFINITY, INFINITY),
};
/// The inverse of [`Self::EVERYTHING`]: stretches from positive infinity to negative infinity.
/// Contains no points.
///
/// This is useful as the seed for bounding boxes.
///
/// # Example:
/// ```
/// # use emath::*;
/// let mut rect = Rect::NOTHING;
/// assert!(rect.size() == Vec2::splat(-f32::INFINITY));
/// assert!(rect.contains(pos2(0.0, 0.0)) == false);
/// rect.extend_with(pos2(2.0, 1.0));
/// rect.extend_with(pos2(0.0, 3.0));
/// assert_eq!(rect, Rect::from_min_max(pos2(0.0, 1.0), pos2(2.0, 3.0)))
/// ```
pub const NOTHING: Self = Self {
min: pos2(INFINITY, INFINITY),
max: pos2(-INFINITY, -INFINITY),
};
/// An invalid [`Rect`] filled with [`f32::NAN`];
pub const NAN: Self = Self {
min: pos2(f32::NAN, f32::NAN),
max: pos2(f32::NAN, f32::NAN),
};
#[inline(always)]
pub const fn from_min_max(min: Pos2, max: Pos2) -> Self {
Rect { min, max }
}
/// left-top corner plus a size (stretching right-down).
#[inline(always)]
pub fn from_min_size(min: Pos2, size: Vec2) -> Self {
Rect {
min,
max: min + size,
}
}
#[inline(always)]
pub fn from_center_size(center: Pos2, size: Vec2) -> Self {
Rect {
min: center - size * 0.5,
max: center + size * 0.5,
}
}
#[inline(always)]
pub fn from_x_y_ranges(x_range: RangeInclusive<f32>, y_range: RangeInclusive<f32>) -> Self {
Rect {
min: pos2(*x_range.start(), *y_range.start()),
max: pos2(*x_range.end(), *y_range.end()),
}
}
/// Returns the bounding rectangle of the two points.
#[inline]
pub fn from_two_pos(a: Pos2, b: Pos2) -> Self {
Rect {
min: pos2(a.x.min(b.x), a.y.min(b.y)),
max: pos2(a.x.max(b.x), a.y.max(b.y)),
}
}
/// Bounding-box around the points.
pub fn from_points(points: &[Pos2]) -> Self {
let mut rect = Rect::NOTHING;
for &p in points {
rect.extend_with(p);
}
rect
}
/// A [`Rect`] that contains every point to the right of the given X coordinate.
#[inline]
pub fn everything_right_of(left_x: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_left(left_x);
rect
}
/// A [`Rect`] that contains every point to the left of the given X coordinate.
#[inline]
pub fn everything_left_of(right_x: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_right(right_x);
rect
}
/// A [`Rect`] that contains every point below a certain y coordinate
#[inline]
pub fn everything_below(top_y: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_top(top_y);
rect
}
/// A [`Rect`] that contains every point above a certain y coordinate
#[inline]
pub fn everything_above(bottom_y: f32) -> Self {
let mut rect = Self::EVERYTHING;
rect.set_bottom(bottom_y);
rect
}
/// Expand by this much in each direction, keeping the center
#[must_use]
pub fn expand(self, amnt: f32) -> Self {
self.expand2(Vec2::splat(amnt))
}
/// Expand by this much in each direction, keeping the center
#[must_use]
pub fn expand2(self, amnt: Vec2) -> Self {
Rect::from_min_max(self.min - amnt, self.max + amnt)
}
/// Shrink by this much in each direction, keeping the center
#[must_use]
pub fn shrink(self, amnt: f32) -> Self {
self.shrink2(Vec2::splat(amnt))
}
/// Shrink by this much in each direction, keeping the center
#[must_use]
pub fn shrink2(self, amnt: Vec2) -> Self {
Rect::from_min_max(self.min + amnt, self.max - amnt)
}
#[must_use]
#[inline]
pub fn translate(self, amnt: Vec2) -> Self {
Rect::from_min_size(self.min + amnt, self.size())
}
/// Rotate the bounds (will expand the [`Rect`])
#[must_use]
#[inline]
pub fn rotate_bb(self, rot: Rot2) -> Self {
let a = rot * self.left_top().to_vec2();
let b = rot * self.right_top().to_vec2();
let c = rot * self.left_bottom().to_vec2();
let d = rot * self.right_bottom().to_vec2();
Self::from_min_max(
a.min(b).min(c).min(d).to_pos2(),
a.max(b).max(c).max(d).to_pos2(),
)
}
#[must_use]
#[inline]
pub fn intersects(self, other: Rect) -> bool {
self.min.x <= other.max.x
&& other.min.x <= self.max.x
&& self.min.y <= other.max.y
&& other.min.y <= self.max.y
}
/// keep min
pub fn set_width(&mut self, w: f32) {
self.max.x = self.min.x + w;
}
/// keep min
pub fn set_height(&mut self, h: f32) {
self.max.y = self.min.y + h;
}
/// Keep size
pub fn set_center(&mut self, center: Pos2) {
*self = self.translate(center - self.center());
}
#[must_use]
#[inline(always)]
pub fn contains(&self, p: Pos2) -> bool {
self.min.x <= p.x && p.x <= self.max.x && self.min.y <= p.y && p.y <= self.max.y
}
#[must_use]
pub fn contains_rect(&self, other: Rect) -> bool {
self.contains(other.min) && self.contains(other.max)
}
/// Return the given points clamped to be inside the rectangle
/// Panics if [`Self::is_negative`].
#[must_use]
pub fn clamp(&self, p: Pos2) -> Pos2 {
p.clamp(self.min, self.max)
}
#[inline(always)]
pub fn extend_with(&mut self, p: Pos2) {
self.min = self.min.min(p);
self.max = self.max.max(p);
}
#[inline(always)]
/// Expand to include the given x coordinate
pub fn extend_with_x(&mut self, x: f32) {
self.min.x = self.min.x.min(x);
self.max.x = self.max.x.max(x);
}
#[inline(always)]
/// Expand to include the given y coordinate
pub fn extend_with_y(&mut self, y: f32) {
self.min.y = self.min.y.min(y);
self.max.y = self.max.y.max(y);
}
/// The union of two bounding rectangle, i.e. the minimum [`Rect`]
/// that contains both input rectangles.
#[inline(always)]
#[must_use]
pub fn union(self, other: Rect) -> Rect {
Rect {
min: self.min.min(other.min),
max: self.max.max(other.max),
}
}
/// The intersection of two [`Rect`], i.e. the area covered by both.
#[inline]
#[must_use]
pub fn intersect(self, other: Rect) -> Self {
Self {
min: self.min.max(other.min),
max: self.max.min(other.max),
}
}
#[inline(always)]
pub fn center(&self) -> Pos2 {
Pos2 {
x: (self.min.x + self.max.x) / 2.0,
y: (self.min.y + self.max.y) / 2.0,
}
}
#[inline(always)]
pub fn size(&self) -> Vec2 {
self.max - self.min
}
#[inline(always)]
pub fn width(&self) -> f32 {
self.max.x - self.min.x
}
#[inline(always)]
pub fn height(&self) -> f32 {
self.max.y - self.min.y
}
/// Width / height
///
/// * `aspect_ratio < 1`: portrait / high
/// * `aspect_ratio = 1`: square
/// * `aspect_ratio > 1`: landscape / wide
pub fn aspect_ratio(&self) -> f32 {
self.width() / self.height()
}
/// `[2, 1]` for wide screen, and `[1, 2]` for portrait, etc.
/// At least one dimension = 1, the other >= 1
/// Returns the proportions required to letter-box a square view area.
pub fn square_proportions(&self) -> Vec2 {
let w = self.width();
let h = self.height();
if w > h {
vec2(w / h, 1.0)
} else {
vec2(1.0, h / w)
}
}
#[inline(always)]
pub fn area(&self) -> f32 {
self.width() * self.height()
}
/// The distance from the rect to the position.
///
/// The distance is zero when the position is in the interior of the rectangle.
#[inline]
pub fn distance_to_pos(&self, pos: Pos2) -> f32 {
self.distance_sq_to_pos(pos).sqrt()
}
/// The distance from the rect to the position, squared.
///
/// The distance is zero when the position is in the interior of the rectangle.
#[inline]
pub fn distance_sq_to_pos(&self, pos: Pos2) -> f32 {
let dx = if self.min.x > pos.x {
self.min.x - pos.x
} else if pos.x > self.max.x {
pos.x - self.max.x
} else {
0.0
};
let dy = if self.min.y > pos.y {
self.min.y - pos.y
} else if pos.y > self.max.y {
pos.y - self.max.y
} else {
0.0
};
dx * dx + dy * dy
}
/// Signed distance to the edge of the box.
///
/// Negative inside the box.
pub fn signed_distance_to_pos(&self, pos: Pos2) -> f32 {
let edge_distances = (pos - self.center()).abs() - self.size() * 0.5;
let inside_dist = edge_distances.x.max(edge_distances.y).min(0.0);
let outside_dist = edge_distances.max(Vec2::ZERO).length();
inside_dist + outside_dist
}
/// Linearly interpolate so that `[0, 0]` is [`Self::min`] and
/// `[1, 1]` is [`Self::max`].
pub fn lerp(&self, t: Vec2) -> Pos2 {
Pos2 {
x: lerp(self.min.x..=self.max.x, t.x),
y: lerp(self.min.y..=self.max.y, t.y),
}
}
#[inline(always)]
pub fn x_range(&self) -> RangeInclusive<f32> {
self.min.x..=self.max.x
}
#[inline(always)]
pub fn y_range(&self) -> RangeInclusive<f32> {
self.min.y..=self.max.y
}
#[inline(always)]
pub fn bottom_up_range(&self) -> RangeInclusive<f32> {
self.max.y..=self.min.y
}
/// `width < 0 || height < 0`
#[inline(always)]
pub fn is_negative(&self) -> bool {
self.max.x < self.min.x || self.max.y < self.min.y
}
/// `width > 0 && height > 0`
#[inline(always)]
pub fn is_positive(&self) -> bool {
self.min.x < self.max.x && self.min.y < self.max.y
}
/// True if all members are also finite.
#[inline(always)]
pub fn is_finite(&self) -> bool {
self.min.is_finite() && self.max.is_finite()
}
/// True if any member is NaN.
#[inline(always)]
pub fn any_nan(self) -> bool {
self.min.any_nan() || self.max.any_nan()
}
}
/// ## Convenience functions (assumes origin is towards left top):
impl Rect {
/// `min.x`
#[inline(always)]
pub fn left(&self) -> f32 {
self.min.x
}
/// `min.x`
#[inline(always)]
pub fn left_mut(&mut self) -> &mut f32 {
&mut self.min.x
}
/// `min.x`
#[inline(always)]
pub fn set_left(&mut self, x: f32) {
self.min.x = x;
}
/// `max.x`
#[inline(always)]
pub fn right(&self) -> f32 {
self.max.x
}
/// `max.x`
#[inline(always)]
pub fn right_mut(&mut self) -> &mut f32 {
&mut self.max.x
}
/// `max.x`
#[inline(always)]
pub fn set_right(&mut self, x: f32) {
self.max.x = x;
}
/// `min.y`
#[inline(always)]
pub fn top(&self) -> f32 {
self.min.y
}
/// `min.y`
#[inline(always)]
pub fn top_mut(&mut self) -> &mut f32 {
&mut self.min.y
}
/// `min.y`
#[inline(always)]
pub fn set_top(&mut self, y: f32) {
self.min.y = y;
}
/// `max.y`
#[inline(always)]
pub fn bottom(&self) -> f32 {
self.max.y
}
/// `max.y`
#[inline(always)]
pub fn bottom_mut(&mut self) -> &mut f32 {
&mut self.max.y
}
/// `max.y`
#[inline(always)]
pub fn set_bottom(&mut self, y: f32) {
self.max.y = y;
}
#[inline(always)]
pub fn left_top(&self) -> Pos2 {
pos2(self.left(), self.top())
}
#[inline(always)]
pub fn center_top(&self) -> Pos2 {
pos2(self.center().x, self.top())
}
#[inline(always)]
pub fn right_top(&self) -> Pos2 {
pos2(self.right(), self.top())
}
#[inline(always)]
pub fn left_center(&self) -> Pos2 {
pos2(self.left(), self.center().y)
}
#[inline(always)]
pub fn right_center(&self) -> Pos2 {
pos2(self.right(), self.center().y)
}
#[inline(always)]
pub fn left_bottom(&self) -> Pos2 {
pos2(self.left(), self.bottom())
}
#[inline(always)]
pub fn center_bottom(&self) -> Pos2 {
pos2(self.center().x, self.bottom())
}
#[inline(always)]
pub fn right_bottom(&self) -> Pos2 {
pos2(self.right(), self.bottom())
}
}
impl std::fmt::Debug for Rect {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "[{:?} - {:?}]", self.min, self.max)
}
}
/// from (min, max) or (left top, right bottom)
impl From<[Pos2; 2]> for Rect {
fn from([min, max]: [Pos2; 2]) -> Self {
Self { min, max }
}
}

View file

@ -0,0 +1,83 @@
use crate::{pos2, remap, remap_clamp, Pos2, Rect, Vec2};
/// Linearly transforms positions from one [`Rect`] to another.
///
/// [`RectTransform`] stores the rectangles, and therefore supports clamping and culling.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct RectTransform {
from: Rect,
to: Rect,
}
impl RectTransform {
pub fn identity(from_and_to: Rect) -> Self {
Self::from_to(from_and_to, from_and_to)
}
pub fn from_to(from: Rect, to: Rect) -> Self {
Self { from, to }
}
pub fn from(&self) -> &Rect {
&self.from
}
pub fn to(&self) -> &Rect {
&self.to
}
/// The scale factors.
pub fn scale(&self) -> Vec2 {
self.to.size() / self.from.size()
}
pub fn inverse(&self) -> RectTransform {
Self::from_to(self.to, self.from)
}
/// Transforms the given coordinate in the `from` space to the `to` space.
pub fn transform_pos(&self, pos: Pos2) -> Pos2 {
pos2(
remap(pos.x, self.from.x_range(), self.to.x_range()),
remap(pos.y, self.from.y_range(), self.to.y_range()),
)
}
/// Transforms the given rectangle in the `in`-space to a rectangle in the `out`-space.
pub fn transform_rect(&self, rect: Rect) -> Rect {
Rect {
min: self.transform_pos(rect.min),
max: self.transform_pos(rect.max),
}
}
/// Transforms the given coordinate in the `from` space to the `to` space,
/// clamping if necessary.
pub fn transform_pos_clamped(&self, pos: Pos2) -> Pos2 {
pos2(
remap_clamp(pos.x, self.from.x_range(), self.to.x_range()),
remap_clamp(pos.y, self.from.y_range(), self.to.y_range()),
)
}
}
/// Transforms the position.
impl std::ops::Mul<Pos2> for RectTransform {
type Output = Pos2;
fn mul(self, pos: Pos2) -> Pos2 {
self.transform_pos(pos)
}
}
/// Transforms the position.
impl std::ops::Mul<Pos2> for &RectTransform {
type Output = Pos2;
fn mul(self, pos: Pos2) -> Pos2 {
self.transform_pos(pos)
}
}

View file

@ -0,0 +1,198 @@
use super::Vec2;
// {s,c} represents the rotation matrix:
//
// | c -s |
// | s c |
//
// `vec2(c,s)` represents where the X axis will end up after rotation.
//
/// Represents a rotation in the 2D plane.
//
/// A rotation of 𝞃/4 = 90° rotates the X axis to the Y axis.
//
/// Normally a [`Rot2`] is normalized (unit-length).
/// If not, it will also scale vectors.
#[repr(C)]
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Rot2 {
/// angle.sin()
s: f32,
/// angle.cos()
c: f32,
}
/// Identity rotation
impl Default for Rot2 {
/// Identity rotation
fn default() -> Self {
Self { s: 0.0, c: 1.0 }
}
}
impl Rot2 {
/// The identity rotation: nothing rotates
pub const IDENTITY: Self = Self { s: 0.0, c: 1.0 };
/// Angle is clockwise in radians.
/// A 𝞃/4 = 90° rotation means rotating the X axis to the Y axis.
pub fn from_angle(angle: f32) -> Self {
let (s, c) = angle.sin_cos();
Self { s, c }
}
pub fn angle(self) -> f32 {
self.s.atan2(self.c)
}
/// The factor by which vectors will be scaled.
pub fn length(self) -> f32 {
self.c.hypot(self.s)
}
pub fn length_squared(self) -> f32 {
self.c.powi(2) + self.s.powi(2)
}
pub fn is_finite(self) -> bool {
self.c.is_finite() && self.s.is_finite()
}
#[must_use]
pub fn inverse(self) -> Rot2 {
Self {
s: -self.s,
c: self.c,
} / self.length_squared()
}
#[must_use]
pub fn normalized(self) -> Self {
let l = self.length();
let ret = Self {
c: self.c / l,
s: self.s / l,
};
crate::emath_assert!(ret.is_finite());
ret
}
}
impl std::fmt::Debug for Rot2 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Rot2 {{ angle: {:.1}°, length: {} }}",
self.angle().to_degrees(),
self.length()
)
}
}
impl std::ops::Mul<Rot2> for Rot2 {
type Output = Rot2;
fn mul(self, r: Rot2) -> Rot2 {
/*
|lc -ls| * |rc -rs|
|ls lc| |rs rc|
*/
Rot2 {
c: self.c * r.c - self.s * r.s,
s: self.s * r.c + self.c * r.s,
}
}
}
/// Rotates (and maybe scales) the vector.
impl std::ops::Mul<Vec2> for Rot2 {
type Output = Vec2;
fn mul(self, v: Vec2) -> Vec2 {
Vec2 {
x: self.c * v.x - self.s * v.y,
y: self.s * v.x + self.c * v.y,
}
}
}
/// Scales the rotor.
impl std::ops::Mul<Rot2> for f32 {
type Output = Rot2;
fn mul(self, r: Rot2) -> Rot2 {
Rot2 {
c: self * r.c,
s: self * r.s,
}
}
}
/// Scales the rotor.
impl std::ops::Mul<f32> for Rot2 {
type Output = Rot2;
fn mul(self, r: f32) -> Rot2 {
Rot2 {
c: self.c * r,
s: self.s * r,
}
}
}
/// Scales the rotor.
impl std::ops::Div<f32> for Rot2 {
type Output = Rot2;
fn div(self, r: f32) -> Rot2 {
Rot2 {
c: self.c / r,
s: self.s / r,
}
}
}
#[cfg(test)]
mod test {
use super::Rot2;
use crate::vec2;
#[test]
fn test_rotation2() {
{
let angle = std::f32::consts::TAU / 6.0;
let rot = Rot2::from_angle(angle);
assert!((rot.angle() - angle).abs() < 1e-5);
assert!((rot * rot.inverse()).angle().abs() < 1e-5);
assert!((rot.inverse() * rot).angle().abs() < 1e-5);
}
{
let angle = std::f32::consts::TAU / 4.0;
let rot = Rot2::from_angle(angle);
assert!(((rot * vec2(1.0, 0.0)) - vec2(0.0, 1.0)).length() < 1e-5);
}
{
// Test rotation and scaling
let angle = std::f32::consts::TAU / 4.0;
let rot = 3.0 * Rot2::from_angle(angle);
let rotated = rot * vec2(1.0, 0.0);
let expected = vec2(0.0, 3.0);
assert!(
(rotated - expected).length() < 1e-5,
"Expected {:?} to equal {:?}. rot: {:?}",
rotated,
expected,
rot,
);
let undone = rot.inverse() * rot;
assert!(undone.angle().abs() < 1e-5);
assert!((undone.length() - 1.0).abs() < 1e-5,);
}
}
}

View file

@ -0,0 +1,157 @@
//! Find "simple" numbers is some range. Used by sliders.
const NUM_DECIMALS: usize = 15;
/// Find the "simplest" number in a closed range [min, max], i.e. the one with the fewest decimal digits.
///
/// So in the range `[0.83, 1.354]` you will get `1.0`, and for `[0.37, 0.48]` you will get `0.4`.
/// This is used when dragging sliders etc to get the values that users are most likely to desire.
/// This assumes a decimal centric user.
pub fn best_in_range_f64(min: f64, max: f64) -> f64 {
// Avoid NaN if we can:
if min.is_nan() {
return max;
}
if max.is_nan() {
return min;
}
if max < min {
return best_in_range_f64(max, min);
}
if min == max {
return min;
}
if min <= 0.0 && 0.0 <= max {
return 0.0; // always prefer zero
}
if min < 0.0 {
return -best_in_range_f64(-max, -min);
}
// Prefer finite numbers:
if !max.is_finite() {
return min;
}
crate::emath_assert!(min.is_finite() && max.is_finite());
let min_exponent = min.log10();
let max_exponent = max.log10();
if min_exponent.floor() != max_exponent.floor() {
// pick the geometric center of the two:
let exponent = (min_exponent + max_exponent) / 2.0;
return 10.0_f64.powi(exponent.round() as i32);
}
if is_integer(min_exponent) {
return 10.0_f64.powf(min_exponent);
}
if is_integer(max_exponent) {
return 10.0_f64.powf(max_exponent);
}
let exp_factor = 10.0_f64.powi(max_exponent.floor() as i32);
let min_str = to_decimal_string(min / exp_factor);
let max_str = to_decimal_string(max / exp_factor);
// eprintln!("min_str: {:?}", min_str);
// eprintln!("max_str: {:?}", max_str);
let mut ret_str = [0; NUM_DECIMALS];
// Select the common prefix:
let mut i = 0;
while i < NUM_DECIMALS && max_str[i] == min_str[i] {
ret_str[i] = max_str[i];
i += 1;
}
if i < NUM_DECIMALS {
// Pick the deciding digit.
// Note that "to_decimal_string" rounds down, so we that's why we add 1 here
ret_str[i] = simplest_digit_closed_range(min_str[i] + 1, max_str[i]);
}
from_decimal_string(&ret_str) * exp_factor
}
fn is_integer(f: f64) -> bool {
f.round() == f
}
fn to_decimal_string(v: f64) -> [i32; NUM_DECIMALS] {
crate::emath_assert!(v < 10.0, "{:?}", v);
let mut digits = [0; NUM_DECIMALS];
let mut v = v.abs();
for r in &mut digits {
let digit = v.floor();
*r = digit as i32;
v -= digit;
v *= 10.0;
}
digits
}
fn from_decimal_string(s: &[i32]) -> f64 {
let mut ret: f64 = 0.0;
for (i, &digit) in s.iter().enumerate() {
ret += (digit as f64) * 10.0_f64.powi(-(i as i32));
}
ret
}
/// Find the simplest integer in the range [min, max]
fn simplest_digit_closed_range(min: i32, max: i32) -> i32 {
crate::emath_assert!(1 <= min && min <= max && max <= 9);
if min <= 5 && 5 <= max {
5
} else {
(min + max) / 2
}
}
#[allow(clippy::approx_constant)]
#[test]
fn test_aim() {
assert_eq!(best_in_range_f64(-0.2, 0.0), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(-10_004.23, 3.14), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(-0.2, 100.0), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(0.2, 0.0), 0.0, "Prefer zero");
assert_eq!(best_in_range_f64(7.8, 17.8), 10.0);
assert_eq!(best_in_range_f64(99.0, 300.0), 100.0);
assert_eq!(best_in_range_f64(-99.0, -300.0), -100.0);
assert_eq!(best_in_range_f64(0.4, 0.9), 0.5, "Prefer ending on 5");
assert_eq!(best_in_range_f64(14.1, 19.99), 15.0, "Prefer ending on 5");
assert_eq!(best_in_range_f64(12.3, 65.9), 50.0, "Prefer leading 5");
assert_eq!(best_in_range_f64(493.0, 879.0), 500.0, "Prefer leading 5");
assert_eq!(best_in_range_f64(0.37, 0.48), 0.40);
// assert_eq!(best_in_range_f64(123.71, 123.76), 123.75); // TODO(emilk): we get 123.74999999999999 here
// assert_eq!(best_in_range_f32(123.71, 123.76), 123.75);
assert_eq!(best_in_range_f64(7.5, 16.3), 10.0);
assert_eq!(best_in_range_f64(7.5, 76.3), 10.0);
assert_eq!(best_in_range_f64(7.5, 763.3), 100.0);
assert_eq!(best_in_range_f64(7.5, 1_345.0), 100.0);
assert_eq!(best_in_range_f64(7.5, 123_456.0), 1000.0, "Geometric mean");
assert_eq!(best_in_range_f64(9.9999, 99.999), 10.0);
assert_eq!(best_in_range_f64(10.000, 99.999), 10.0);
assert_eq!(best_in_range_f64(10.001, 99.999), 50.0);
assert_eq!(best_in_range_f64(10.001, 100.000), 100.0);
assert_eq!(best_in_range_f64(99.999, 100.000), 100.0);
assert_eq!(best_in_range_f64(10.001, 100.001), 100.0);
use std::f64::{INFINITY, NAN, NEG_INFINITY};
assert!(best_in_range_f64(NAN, NAN).is_nan());
assert_eq!(best_in_range_f64(NAN, 1.2), 1.2);
assert_eq!(best_in_range_f64(NAN, INFINITY), INFINITY);
assert_eq!(best_in_range_f64(1.2, NAN), 1.2);
assert_eq!(best_in_range_f64(1.2, INFINITY), 1.2);
assert_eq!(best_in_range_f64(INFINITY, 1.2), 1.2);
assert_eq!(best_in_range_f64(NEG_INFINITY, 1.2), 0.0);
assert_eq!(best_in_range_f64(NEG_INFINITY, -2.7), -2.7);
assert_eq!(best_in_range_f64(INFINITY, INFINITY), INFINITY);
assert_eq!(best_in_range_f64(NEG_INFINITY, NEG_INFINITY), NEG_INFINITY);
assert_eq!(best_in_range_f64(NEG_INFINITY, INFINITY), 0.0);
assert_eq!(best_in_range_f64(INFINITY, NEG_INFINITY), 0.0);
}

View file

@ -0,0 +1,463 @@
use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign};
/// A vector has a direction and length.
/// A [`Vec2`] is often used to represent a size.
///
/// emath represents positions using [`crate::Pos2`].
///
/// Normally the units are points (logical pixels).
#[repr(C)]
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
pub struct Vec2 {
/// Rightwards. Width.
pub x: f32,
/// Downwards. Height.
pub y: f32,
}
/// `vec2(x, y) == Vec2::new(x, y)`
#[inline(always)]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
Vec2 { x, y }
}
// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from [f32; 2]:
impl From<[f32; 2]> for Vec2 {
#[inline(always)]
fn from(v: [f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<&[f32; 2]> for Vec2 {
#[inline(always)]
fn from(v: &[f32; 2]) -> Self {
Self { x: v[0], y: v[1] }
}
}
impl From<Vec2> for [f32; 2] {
#[inline(always)]
fn from(v: Vec2) -> Self {
[v.x, v.y]
}
}
impl From<&Vec2> for [f32; 2] {
#[inline(always)]
fn from(v: &Vec2) -> Self {
[v.x, v.y]
}
}
// ----------------------------------------------------------------------------
// Compatibility and convenience conversions to and from (f32, f32):
impl From<(f32, f32)> for Vec2 {
#[inline(always)]
fn from(v: (f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<&(f32, f32)> for Vec2 {
#[inline(always)]
fn from(v: &(f32, f32)) -> Self {
Self { x: v.0, y: v.1 }
}
}
impl From<Vec2> for (f32, f32) {
#[inline(always)]
fn from(v: Vec2) -> Self {
(v.x, v.y)
}
}
impl From<&Vec2> for (f32, f32) {
#[inline(always)]
fn from(v: &Vec2) -> Self {
(v.x, v.y)
}
}
// ----------------------------------------------------------------------------
// Mint compatibility and convenience conversions
#[cfg(feature = "mint")]
impl From<mint::Vector2<f32>> for Vec2 {
#[inline]
fn from(v: mint::Vector2<f32>) -> Self {
Self::new(v.x, v.y)
}
}
#[cfg(feature = "mint")]
impl From<Vec2> for mint::Vector2<f32> {
#[inline]
fn from(v: Vec2) -> Self {
Self { x: v.x, y: v.y }
}
}
// ----------------------------------------------------------------------------
impl Vec2 {
pub const X: Vec2 = Vec2 { x: 1.0, y: 0.0 };
pub const Y: Vec2 = Vec2 { x: 0.0, y: 1.0 };
pub const RIGHT: Vec2 = Vec2 { x: 1.0, y: 0.0 };
pub const LEFT: Vec2 = Vec2 { x: -1.0, y: 0.0 };
pub const UP: Vec2 = Vec2 { x: 0.0, y: -1.0 };
pub const DOWN: Vec2 = Vec2 { x: 0.0, y: 1.0 };
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
pub const INFINITY: Self = Self::splat(f32::INFINITY);
#[inline(always)]
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
/// Set both `x` and `y` to the same value.
#[inline(always)]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v }
}
/// Treat this vector as a position.
/// `v.to_pos2()` is equivalent to `Pos2::default() + v`.
#[inline(always)]
pub fn to_pos2(self) -> crate::Pos2 {
crate::Pos2 {
x: self.x,
y: self.y,
}
}
/// Safe normalize: returns zero if input is zero.
#[must_use]
#[inline(always)]
pub fn normalized(self) -> Self {
let len = self.length();
if len <= 0.0 {
self
} else {
self / len
}
}
/// Rotates the vector by 90°, i.e positive X to positive Y
/// (clockwise in egui coordinates).
#[inline(always)]
pub fn rot90(self) -> Self {
vec2(self.y, -self.x)
}
#[inline(always)]
pub fn length(self) -> f32 {
self.x.hypot(self.y)
}
#[inline(always)]
pub fn length_sq(self) -> f32 {
self.x * self.x + self.y * self.y
}
/// Measures the angle of the vector.
///
/// ```
/// # use emath::Vec2;
/// use std::f32::consts::TAU;
///
/// assert_eq!(Vec2::ZERO.angle(), 0.0);
/// assert_eq!(Vec2::angled(0.0).angle(), 0.0);
/// assert_eq!(Vec2::angled(1.0).angle(), 1.0);
/// assert_eq!(Vec2::X.angle(), 0.0);
/// assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
///
/// assert_eq!(Vec2::RIGHT.angle(), 0.0);
/// assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
/// assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
/// ```
#[inline(always)]
pub fn angle(self) -> f32 {
self.y.atan2(self.x)
}
/// Create a unit vector with the given CW angle (in radians).
/// * An angle of zero gives the unit X axis.
/// * An angle of 𝞃/4 = 90° gives the unit Y axis.
///
/// ```
/// # use emath::Vec2;
/// use std::f32::consts::TAU;
///
/// assert_eq!(Vec2::angled(0.0), Vec2::X);
/// assert!((Vec2::angled(0.25 * TAU) - Vec2::Y).length() < 1e-5);
/// ```
#[inline(always)]
pub fn angled(angle: f32) -> Self {
vec2(angle.cos(), angle.sin())
}
#[must_use]
#[inline(always)]
pub fn floor(self) -> Self {
vec2(self.x.floor(), self.y.floor())
}
#[must_use]
#[inline(always)]
pub fn round(self) -> Self {
vec2(self.x.round(), self.y.round())
}
#[must_use]
#[inline(always)]
pub fn ceil(self) -> Self {
vec2(self.x.ceil(), self.y.ceil())
}
#[must_use]
#[inline]
pub fn abs(self) -> Self {
vec2(self.x.abs(), self.y.abs())
}
/// True if all members are also finite.
#[inline(always)]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
/// True if any member is NaN.
#[inline(always)]
pub fn any_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan()
}
#[must_use]
#[inline]
pub fn min(self, other: Self) -> Self {
vec2(self.x.min(other.x), self.y.min(other.y))
}
#[must_use]
#[inline]
pub fn max(self, other: Self) -> Self {
vec2(self.x.max(other.x), self.y.max(other.y))
}
/// The dot-product of two vectors.
#[inline]
pub fn dot(self, other: Self) -> f32 {
self.x * other.x + self.y * other.y
}
/// Returns the minimum of `self.x` and `self.y`.
#[must_use]
#[inline(always)]
pub fn min_elem(self) -> f32 {
self.x.min(self.y)
}
/// Returns the maximum of `self.x` and `self.y`.
#[inline(always)]
#[must_use]
pub fn max_elem(self) -> f32 {
self.x.max(self.y)
}
#[must_use]
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
Self {
x: self.x.clamp(min.x, max.x),
y: self.y.clamp(min.y, max.y),
}
}
}
impl std::ops::Index<usize> for Vec2 {
type Output = f32;
#[inline(always)]
fn index(&self, index: usize) -> &f32 {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("Vec2 index out of bounds: {}", index),
}
}
}
impl std::ops::IndexMut<usize> for Vec2 {
#[inline(always)]
fn index_mut(&mut self, index: usize) -> &mut f32 {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("Vec2 index out of bounds: {}", index),
}
}
}
impl Eq for Vec2 {}
impl Neg for Vec2 {
type Output = Vec2;
#[inline(always)]
fn neg(self) -> Vec2 {
vec2(-self.x, -self.y)
}
}
impl AddAssign for Vec2 {
#[inline(always)]
fn add_assign(&mut self, rhs: Vec2) {
*self = Vec2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
};
}
}
impl SubAssign for Vec2 {
#[inline(always)]
fn sub_assign(&mut self, rhs: Vec2) {
*self = Vec2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
};
}
}
impl Add for Vec2 {
type Output = Vec2;
#[inline(always)]
fn add(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.x + rhs.x,
y: self.y + rhs.y,
}
}
}
impl Sub for Vec2 {
type Output = Vec2;
#[inline(always)]
fn sub(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.x - rhs.x,
y: self.y - rhs.y,
}
}
}
/// Element-wise multiplication
impl Mul<Vec2> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn mul(self, vec: Vec2) -> Vec2 {
Vec2 {
x: self.x * vec.x,
y: self.y * vec.y,
}
}
}
/// Element-wise division
impl Div<Vec2> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn div(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.x / rhs.x,
y: self.y / rhs.y,
}
}
}
impl MulAssign<f32> for Vec2 {
#[inline(always)]
fn mul_assign(&mut self, rhs: f32) {
self.x *= rhs;
self.y *= rhs;
}
}
impl Mul<f32> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn mul(self, factor: f32) -> Vec2 {
Vec2 {
x: self.x * factor,
y: self.y * factor,
}
}
}
impl Mul<Vec2> for f32 {
type Output = Vec2;
#[inline(always)]
fn mul(self, vec: Vec2) -> Vec2 {
Vec2 {
x: self * vec.x,
y: self * vec.y,
}
}
}
impl Div<f32> for Vec2 {
type Output = Vec2;
#[inline(always)]
fn div(self, factor: f32) -> Vec2 {
Vec2 {
x: self.x / factor,
y: self.y / factor,
}
}
}
impl std::fmt::Debug for Vec2 {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "[{:.1} {:.1}]", self.x, self.y)
}
}
#[test]
fn test_vec2() {
macro_rules! almost_eq {
($left: expr, $right: expr) => {
let left = $left;
let right = $right;
assert!((left - right).abs() < 1e-6, "{} != {}", left, right);
};
}
use std::f32::consts::TAU;
assert_eq!(Vec2::ZERO.angle(), 0.0);
assert_eq!(Vec2::angled(0.0).angle(), 0.0);
assert_eq!(Vec2::angled(1.0).angle(), 1.0);
assert_eq!(Vec2::X.angle(), 0.0);
assert_eq!(Vec2::Y.angle(), 0.25 * TAU);
assert_eq!(Vec2::RIGHT.angle(), 0.0);
assert_eq!(Vec2::DOWN.angle(), 0.25 * TAU);
almost_eq!(Vec2::LEFT.angle(), 0.50 * TAU);
assert_eq!(Vec2::UP.angle(), -0.25 * TAU);
}