so yeah that was a bunch of code

This commit is contained in:
nora 2023-05-27 22:30:09 +02:00
parent 3a282ffb89
commit ebe01c7521
17 changed files with 590 additions and 106 deletions

217
codegen/src/x86_64.rs Normal file
View file

@ -0,0 +1,217 @@
//! Basic codegen for the x86-64 architecture.
//!
//! We use the [`iced_x86`] crate as our assembler.
//!
//! Then, all IR basic blocks and statements are lowered in a straightforward way.
//! No optimizations are done. There is some basic register allocation.
//!
//! # Register allocation
//!
//! Register allocation is not very smart, but also not too stupid. It tries to put SSA
//! registers into machine registers as much as possible.
//!
//! ```text
//! bb0:
//! %0 = 0
//! %1 = 1
//! %2 = add %0 %1
//! switch %2, then bb1, else bb2
//!
//! bb1:
//! %3 = add %1, 1
//!
//! bb2:
//! %4 = add %2, 2
//! ```
//!
//! For all SSA registers, we establish their "point of last use". This is the bb,stmt where their last usage occurs.
//!
//! First, we establish a list of possible registers to allocate.
//! Since we immediately alloca all parameters, all the param registers are free real estate.
//! Also, `rbx` is always saved on the stack at the start and end.
//!
//! ```text
//! rax, rbx, rdi, rsi, rcx, rdx, r8, r9
//! ```
//!
//! This forms our priority list of registers.
//!
//! Every time a statement has a return value, we try to assign that SSA register into a new machine register.
//! For this, we iterate through the register list above and find the first register that's free. If we see a register
//! that is not used anymore at the current location, we throw it out and use that new slot.
//!
//! When codegening an SSA register, we look into a lookup table from SSA register to machine register/stack spill and use that.
//!
//! When the list above is full, we spill the register to the stack. This should be rare. If the register doesn't fit into a machine
//! register, it's also spilled.
//!
//! ## Registers
//! <https://gitlab.com/x86-psABIs/x86-64-ABI>
//!
//! | name | description | callee-saved |
//! | -------- | -------------------- | ------------ |
//! | %rax | temporary register; with variable arguments passes information about the number of vector registers used; 1st return register | No |
//! | %rbx | callee-saved register | Yes |
//! | %rcx | used to pass 4th integer argument to functions | No |
//! | %rdx | used to pass 3rd argument to functions; 2nd return register | No |
//! | %rsp | stack pointer | Yes |
//! | %rbp | callee-saved register; optionally used as frame pointer | Yes |
//! | %rsi | used to pass 2nd argument to functions | No |
//! | %rdi | used to pass 1st argument to functions | No |
//! | %r8 | used to pass 5th argument to functions | No |
//! | %r9 | used to pass 6th argument to functions | No |
//! | %r10 | temporary register, used for passing a functions static chain pointer | No |
//! | %r11 | temporary register | No |
//! | %r12-r14 | callee-saved registers | Yes |
//! | %r15 | callee-saved register; optionally used as GOT base pointer | Yes |
use analysis::{
ir::{BbIdx, Func, Operand, Register, Statement, StatementKind},
LoweringCx,
};
use iced_x86::{
code_asm::{self as x, CodeAssembler},
IcedError,
};
use parser::Span;
use rustc_hash::FxHashMap;
use crate::Result;
trait IcedErrExt {
type T;
fn sp(self, span: Span) -> Result<Self::T, analysis::Error>;
}
impl<T> IcedErrExt for Result<T, IcedError> {
type T = T;
fn sp(self, span: Span) -> Result<Self::T, analysis::Error> {
self.map_err(|e| analysis::Error::new(e.to_string(), span))
}
}
#[derive(Debug, Clone, Copy)]
enum RegValue {
Stack { offset: u64 },
}
struct AsmCtxt<'cx> {
lcx: &'cx LoweringCx<'cx>,
a: CodeAssembler,
reg_map: FxHashMap<Register, RegValue>,
current_stack_offset: u64,
bb_idx: BbIdx,
}
impl<'cx> AsmCtxt<'cx> {
fn generate_func(&mut self, func: &Func<'cx>) -> Result<()> {
// TODO: Prologue
loop {
let bb = &func.bbs[self.bb_idx.as_usize()];
for stmt in &bb.statements {
let Statement {
span: st_sp,
ref kind,
} = *stmt;
match *kind {
StatementKind::Alloca {
result: reg,
size,
align: _,
} => {
// TODO: Align
match size {
Operand::Const(c) => {
let offset = c.as_i32();
self.a.sub(x::rsp, offset).sp(st_sp)?;
self.current_stack_offset += offset as u64;
}
Operand::Reg(_) => todo!("dynamic alloca is not supported"),
};
self.reg_map.insert(
reg,
RegValue::Stack {
offset: self.current_stack_offset,
},
);
}
StatementKind::Store {
ptr,
value,
size,
align,
} => match ptr {
Operand::Const(_) => todo!("const stores not implemented"),
Operand::Reg(reg) => {
let value = self.reg_map[&reg];
let stack_offset = match value {
RegValue::Stack { offset } => offset,
};
//let rhs = match value {
// Operand::Const(c) => {}
// Operand::Reg(reg) => {}
//};
// mov [rbp + OFFSET], RHS
//self.a.add_instruction(Instruction::with2(Code::Mov, op0, op1))
self.a.mov(x::ptr(x::rax), x::rbx);
}
},
StatementKind::Load {
result,
ptr,
size,
align,
} => todo!(),
StatementKind::BinOp {
kind,
lhs,
rhs,
result,
} => todo!(),
StatementKind::UnaryOperation { rhs, kind, result } => todo!(),
StatementKind::PtrOffset {
result,
ptr: reg,
amount,
} => todo!(),
StatementKind::Call {
result,
func,
ref args,
} => todo!(),
}
}
todo!("next bbs");
}
Ok(())
}
}
pub fn generate_func<'cx>(lcx: &'cx LoweringCx<'cx>, func: &Func<'cx>) -> Result<Vec<u8>> {
assert_eq!(func.arity, 0, "arguments??? in MY uwucc????");
let fn_sp = func.def_span;
let mut a = CodeAssembler::new(64).sp(fn_sp)?;
let mut cx = AsmCtxt {
lcx,
a,
reg_map: FxHashMap::default(),
current_stack_offset: 0,
bb_idx: BbIdx(0),
};
cx.generate_func(func)?;
let code = cx.a.assemble(0x4000).sp(fn_sp)?;
Ok(code)
}