""" base: Benchmark 1: cargo build --release Time (mean ± σ): 58.150 s ± 0.163 s [User: 758.211 s, System: 37.637 s] Range (min … max): 57.936 s … 58.321 s 5 runs thin: Benchmark 1: cargo build --release Time (mean ± σ): 63.999 s ± 0.105 s [User: 879.703 s, System: 40.045 s] Range (min … max): 63.921 s … 64.182 s 5 runs fat: Time (mean ± σ): 264.606 s ± 2.238 s [User: 570.800 s, System: 31.826 s] Range (min … max): 261.573 s … 267.297 s 5 runs # cargo base: Benchmark 1: cargo build --release Time (mean ± σ): 89.381 s ± 0.460 s [User: 689.874 s, System: 55.347 s] Range (min … max): 88.605 s … 89.696 s 5 runs thin: Benchmark 1: cargo build --release Time (mean ± σ): 91.208 s ± 0.610 s [User: 757.353 s, System: 58.558 s] Range (min … max): 90.415 s … 92.112 s 5 runs fat: Time (mean ± σ): 212.215 s ± 2.062 s [User: 576.259 s, System: 50.961 s] Range (min … max): 208.662 s … 213.818 s 5 runs # ripgrep base: Time (mean ± σ): 7.507 s ± 0.223 s [User: 64.115 s, System: 4.514 s] Range (min … max): 7.357 s … 7.882 s 5 runs thin: Time (mean ± σ): 9.285 s ± 0.019 s [User: 81.101 s, System: 5.241 s] Range (min … max): 9.262 s … 9.308 s 5 runs fat: Time (mean ± σ): 29.202 s ± 0.279 s [User: 51.015 s, System: 3.652 s] Range (min … max): 28.860 s … 29.574 s 5 runs # triagebot base: Time (mean ± σ): 74.532 s ± 0.378 s [User: 766.778 s, System: 58.719 s] Range (min … max): 74.105 s … 75.109 s 5 runs thin: Time (mean ± σ): 89.505 s ± 0.299 s [User: 1523.951 s, System: 102.429 s] Range (min … max): 89.024 s … 89.796 s 5 runs fat: Time (mean ± σ): 273.275 s ± 1.694 s [User: 929.604 s, System: 65.856 s] Range (min … max): 271.007 s … 275.619 s 5 runs """ data = [ { "name": "r-a", "base": 58.150, "thin": 63.999, "fat": 264.606, }, { "name": "cargo", "base": 89.381, "thin": 91.208, "fat": 212.215, }, { "name": "ripgrep", "base": 7.507, "thin": 9.285, "fat": 29.202, }, { "name": "triagebot", "base": 74.532, "thin": 89.505, "fat": 273.275, } ] for bench in data: print(f"{bench["name"]} ThinLTO: {bench["thin"] / bench["base"]}") print(f"{bench["name"]} Fat LTO: {bench["fat"] / bench["base"]}") def avg_of(scenario: str) -> float: avg_percentage = sum([bench[scenario] / bench["base"] for bench in data]) / len(data) return avg_percentage print(f"ThinLTO: {avg_of("thin")}") print(f"Fat LTO: {avg_of("fat")}")